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Motivations

Reasoning: Logic is the study of formal reasoning.

• By ‘formal’ we don’t mean that it uses mathematical symbols.

• Rather, what follows from what in virtue of logical form.

• Abstracting from specific subject-matters, logic describes gen-
eral patterns of reasoning that apply across the disciplines.

Normativity: Logic is not a descriptive science studying how human beings
in fact reason across the various disciplines.

• Logic is a normative science, describing an especially strong
form of reasoning that may serve as an ideal.

Artifical: We will primarily work in artificial languages where we will
stipulate how to reason in these languages.

• Regimenting English will expose and remove ambiguities.

• We will provide proof systems for our artificial languages by
which to compute what follows from what in a manner that
vastly extends our natural cognitive capacities.

Interpretations

Proposition: We will begin with propositional logic where a PROPOSITION

is a way for things to be which either obtains or does not.

Declarative Sentence: Given an interpretation of the language, an English sentence
is DECLARATIVE just in case it expresses a proposition.

• Interrogative, imperative, and exclamatory sentences are not
declarative sentences and typically do not have truth-values.

• We will restrict to declarative sentences throughout.

Truth-Values: A declarative sentence is TRUE in an interpretation if, given
that interpretation, it expresses a proposition that obtains
and FALSE in that interpretation otherwise.

Interpretations: We will only be concerned with the truth-values of sentences
in this course, and so it is enough to take an INTERPRETATION

to be an assignment of truth-values to sentences.



• This amounts to taking there to be just two propositions.

Examples

Deductive Argument: A DEDUCTIVE ARGUMENT in English is a nonempty sequence
of declarative sentences where a single sentence is designated
as the CONCLUSION (typically the last line) and all of the
other sentences (if any) are the PREMISES.

Snow: This argument may be compelling, but it is not certain.

A1. It’s snowing.
A2. John drove to work.

Red: This argument provides certainty, but not on all interpretations.

B1. The ball is crimson.
B2. The ball is red.

Museum: This argument’s certainty is independent of the interpretation.

C1. Kate is either at home or at the Museum.
C2. Kate is not at home.
C3. Kate is at the Museum.

Informal Validity

Question 1: What goes wrong if we assume the premises but deny the
conclusion in Snow, Red, and Museum?

Snow: Improbable but possible.

Red: Impossible on the intended interpretation.

Museum: Impossible on all interpretations so long as we hold the mean-
ings of logical terms ‘not’ and ‘or’ fixed.

Task 1: Clarify what it is to hold the logical terms fixed.

Informal Interpretation: An INFORMAL INTERPRETATION assigns every declarative
sentence of English to exactly one TRUTH-VALUE without
offending the following informal semantic clauses:

• A negation is true just in case the negand is false.

• A disjunction is true just in case either disjunct is true.
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Informal Validity: An argument in English is INFORMALLY VALID just in case its
conclusion is true in every informal interpretation in which
all of its premises are true.

Formal Languages

Problem 1: There is no set of all declarative sentences of English, and so
no clear notion of an informal interpretation of English.

Suggestion: Could choose some large set of atomic English sentences, but
this would be arbitrary and hard to specify precisely.

Solution 1: We will regiment English arguments in artificial languages
that are both general and easy to specify precisely.

Propositional Language: The SENTENCES of LPL are composed of SENTENCE LETTERS

A, B, C, . . . and sentential operators ¬ and ∨.

Task 2: Regiment Museum in LPL: H ∨ M,¬H ⊨ M.

• H = ‘Kat is at home’.

• M = ‘Kat is at the Museum’.

Task 3: Provide a way to interpret the sentences of LPL.

Schematic Variables: Let φ, ψ, . . . be variables with sentences of LPL as values, and
let Γ, Σ, . . . be variables for sets of sentences of LPL.

Interpretation: An INTERPRETATION V of LPL assigns exactly one truth-value
(1 or 0) to all sentences of LPL where for any φ and ψ:

• V(¬φ) = 1 just in case V(φ) = 0.

• V(φ ∨ ψ) = 1 just in case V(φ) = 1 or V(ψ) = 1 (or both).

Logical Consequence: Γ ⊨ φ just in case V(φ) = 1 for any interpretation V of LPL

where V(γ) = 1 for all γ ∈ Γ.

Logical Validity: An argument is LOGICALLY VALID just in case its conclusion
φ is a logical consequence of its set of premises Γ, i.e. Γ ⊨ φ.

Task 4: Show that Museum is logically valid.

Logic

Model Theory: We have characterized logical reasoning as truth-preservation
across a space of interpretations for an artificial language.

Proof Theory: Another approach focuses entirely on syntactic rules that
specify which inferences in a language are logically valid.

• A system of basic rules for reasoning in an artificial language
is referred to as a LOGIC for that language.
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• By composing basic rules, we will define what counts as a
PROOF in each of the logics that we will study.

Metalogic: Despite their differences, these two strategies will be shown
to coincide for the languages that we will study in this book.

Logical Form

Picasso

D1. The painting is either a Picasso or a counterfeit and illegally traded.
D2. The painting is not a Picasso.
D3. The painting is a counterfeit and illegally traded.

Task 5: Regiment Picasso in LPL: P ∨ (Q ∧ R),¬P ⊨ Q ∧ R.

• P = ‘The painting is a Picasso’.

• Q = ‘The painting is a counterfeit’.

• R = ‘The painting is illegally traded’.

Question 2: How does this argument relate to Museum?

Logical Form: Both arguments are instances of φ ∨ ψ,¬φ ⊨ ψ which is a
logically valid argument schema, i.e., all instances are valid.

Question 3: How many logically valid argument schemata are there, and
how could we hope to describe this space?

Suggestion: The logical consequence relation ⊨ for LPL describes the space
of logically valid arguments, where the logically valid argu-
ment schemata are patterns in this space.

Problem 2: LPL cannot regiment all logically valid arguments.

Socrates: Every man is mortal, Socrates is a man ⊨ Socrates is mortal.

• Our intuitive grasp on logical validity is not exhaustively
captured by what we can regiment in LPL.

Solution 2: Rather, logical validity in LPL provides a partial answer,
where we may extend the language to provide a broader
description of logical validity, e.g., LFOL.

• We will consider further extensions to LFOL in later chapters.
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Syntax for LLP

LOGIC I
Benjamin Brast-McKie

September 10, 2024

Object Language and Metalanguage

Object Language: LPL is the OBJECT LANGUAGE under study.

Metalanguage: Mathematical English is the METALANGAUGE with
which we will conduct our study.

Quotation: To talk about LPL we will take a quoted expression to
be the CANONICAL NAME for the expression quoted.

Use/Mention: We MENTION expressions by putting them in quotes,
whereas otherwise they are USED.

• ‘Sue’ is a nickname for Susanna.

• The complex sentence ‘A → B’ includes the sentence
letters ‘A’ and ‘B’.

• ‘A’ belongs to LPL, but “ ‘A’ ” and A do not.

The Expressions of LPL

Sentential Operators: ‘¬’,‘∧’,‘∨’,‘→’, and ‘↔’.

• ‘∼’, ‘&’, ‘.’, ‘|’, ‘⊃’, and ‘≡’ are also sometimes used.

Punctuation: ‘(’ and ‘)’.

Sentence Letter: ‘A0’, ‘A1’, . . . , ‘B0’, ‘B1’, . . . , ‘Z0’, ‘Z1’, . . .

Question: How can we specify all sentence letter explicitly?

• A SENTENCE LETTER is the result of subscripting a
capital English letter with a numeral.

Corner Quotes: Let ⌜φx⌝ refer to the result of concatenating φ with x.

• ⌜φx⌝ is a SENTENCE LETTER for any capital letter φ
and numeral for a natural number x.

Primitive Symbols: The sentential operators, punctuation, and sentence
letters are the PRIMITIVE SYMBOLS of LPL.

Expressions: The EXPRESSIONS of LPL are defined recursively:

• The primitive symbol of LPL are expression of LPL.

• If φ and ψ are expressions of LPL, then so is ⌜φψ⌝.

• Nothing else is an expression of LPL.



The Sentences of LPL

Uninterpretable: The expressions ‘¬¬¬¬’, ‘B3A0’, ‘))↔’, and ‘A4∨’
cannot be assigned truth-values in a meaningful way.

• Compare ‘MIT is in session’ and ‘A4 ∧ P1’.

Well-Formed Sentences: Letting φ, ψ, χ, . . . be variables with expressions for
values, we may define the WFSS of LPL as follows:

• Every sentence letter of LPL is a wfs of LPL.

• If the expressions φ and ψ are wfss of LPL, then:

1. ⌜¬φ⌝ is a wff of LPL;
2. ⌜(φ ∧ ψ)⌝ is a wff of LPL;
3. ⌜(φ ∨ ψ)⌝ is a wff of LPL;
4. ⌜(φ → ψ)⌝ is a wff of LPL; and
5. ⌜(φ ↔ ψ)⌝ is a wff of LPL.

• Nothing else is a wff of LPL.

Sentential Variables: We will often restrict ‘φ’, ‘ψ’, ‘χ’,. . . to the wfs of LPL.

Main Operator: The MAIN OPERATOR is the last operator used in the
construction of a sentence.

Arguments: The inputs to a main operator are its ARGUMENTS.

Scope: The main operator has SCOPE over its arguments.

Metalinguistic Conventions

Subscripts: We will suppress the subscript ‘0’ to ease exposition.

Task: Build increasingly complex sentences from just A.

Naming: We will refer to the NEGAND in a NEGATION, the
CONJUNCTS in a CONJUNCTION, the DISJUNCTS in a
DISJUNCTION, the ANTECEDENT and CONSEQUENT

in a MATERIAL CONDITIONAL, and the ARGUMENTS

in a MATERIAL BICONDITIONAL.

Quotation: We will sometimes drop quotes and corner quotes
when the intended meaning is clear from the context.

• We will only do so when this improves readability.

Punctuation: We will drop outermost parentheses for ease.

• Compare A ∧ B, A ∨ B ∨ C, and A ∨ B ∧ C.

Therefore: We will use ‘∴’ for inline arguments.

Metalinguistic: These abbreviations all happen in the metalanguage.
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Truth Functionality

Interpretations: Improving on last time, an INTERPRETATION I is an
assignment of truth-values to sentence letters of LPL.

Valuation: We may then define a VALUATION function VI which
assigns truth-values to every sentence of LPL by way
of the following semantic clauses:

• VI (φ) = I(φ) if φ is a sentence letter of LPL.

• VI (¬φ) = 1 iff VI (φ) = 0 (i.e., VI (φ) ̸= 1).

• VI (φ ∧ ψ) = 1 iff VI (φ) = 1 and VI (ψ) = 1.

• VI (φ ∨ ψ) = 1 iff VI (φ) = 1 or VI (ψ) = 1 (or both).

• VI (φ → ψ) = 1 iff VI (φ) = 0 or VI (ψ) = 1 (or both).

• VI (φ ↔ ψ) = 1 iff VI (φ) = VI (ψ).

Observe: These clauses resemble the composition rules for LPL.

Homophonic Semantics: The clauses for ¬, ∧, and ∨ use analogous operators
in the metalanguage, but not so for → and ↔.

Truth Tables: Use the semantics to fill out the TRUTH TABLES below:

φ ¬φ

1 0
0 1

φ ψ φ ∧ ψ φ ∨ ψ φ → ψ φ ↔ ψ

1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 1 1 0
0 0 0 0 1 1

Truth Functions: The sentential operators express truth-functions, and
so are often called TRUTH-FUNCTIONAL OPERATORS.

Question: How many unary/binary truth-functions are there?

Adequacy: Given these limitations, what should we hope to be
able to adequately regiment in LPL?

Logical Truths: φ is a LOGICAL TRUTH of LPL iff VI (φ) = 1 for all I .
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Regimentation
LOGIC I

Benjamin Brast-McKie
September 16, 2024

From Last Time. . .

Definitions: Here is slightly different take on the same definitions:

Well-Formed Sentences: The set WFSS of LPL is the smallest set to satisfy:

• φ is a wfs of LPL if φ is a sentence letter of LPL;

• ¬φ is a wfs of LPL if φ is a wfs of LPL;

• (φ ∧ ψ) is a wff of LPL if φ and ψ are wfss of LPL;

• (φ ∨ ψ) is a wff of LPL if φ and ψ are wfss of LPL;

• (φ → ψ) is a wff of LPL if φ and ψ are wfss of LPL;

• (φ ↔ ψ) is a wff of LPL if φ and ψ are wfss of LPL.

Semantics: For an interpretation I , a VALUATION function VI is
the smallest function to assign truth-values to every
sentence of SL that satisfies the semantic clauses:

• VI (φ) = I(φ) if φ is a sentence letter of LPL.

• VI (¬φ) = 1 iff VI (φ) = 0 (i.e., VI (φ) ̸= 1).

• VI (φ ∧ ψ) = 1 iff VI (φ) = 1 and VI (ψ) = 1.

• VI (φ ∨ ψ) = 1 iff VI (φ) = 1 or VI (ψ) = 1 (or both).

• VI (φ → ψ) = 1 iff VI (φ) = 0 or VI (ψ) = 1 (or both).

• VI (φ ↔ ψ) = 1 iff VI (φ) = VI (ψ).

Observe: Observe the symmetry between the above.

Recall: The hierarchy of sentences from before. . .

Complexity

Complexity: Comp(φ) is the smallest function to satisfy all of the
following conditions for all wfss φ and ψ of LPL:

• Comp(φ) = 0 if φ is a sentence letter;

• Comp(¬φ) = Comp(φ) + 1;

• Comp(φ ∧ ψ) = Comp(φ) + Comp(ψ) + 1;

• . . .

Question: Do we need to include corner quotes?



Validity

LPL Validity: An argument in LPL is valid iff its conclusion is a logical
consequence of its premises.

English Validity: An argument in English is valid iff it has a (faithful) regi-
mentation (in some language) that is valid.

• Note the imprecision here; there is no avoiding this.

Soundness: An argument is sound iff it is valid and has true premises
(on an interpretation we care about, probably the intended
interpretation).

Examples

Rain

1. If it is raining on a week day, Sam took his car.

2. Kate borrowed Sam’s car only if Sam did not take it.

3. Kate borrowed Sam’s car just in case she visited her parents.

4. It is raining and Kate visited her parents.

5. Either it is not a week day or it is not raining.

Task 2: Regiment this argument and construct its truth table.

Observe: This argument can be adequately regimented and evaluate in SL.

Negation

Uninitiated

A1. If Sam attended the gathering, then he has been initiated.
A2. Sam is uninitiated.
A3. Sam did not attend the gathering.

Observe: Being uninitiated is the same as not being initiated.

Uninvited

B1. Arden is not invited.
B2. Arden is uninvited.

Observe: Arden can fail to be invited without being uninvited.

Question: What about the converse?
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Disjunction

Party

C1. If Adi or James make it to the party, Isa will be happy.
C2. If Adi and James make it to the party, Isa will be happy.

Observe: This argument suggests an inclusive reading of ‘or’.

Race

D1. Sasha won the 100 meter dash.
D2. Josh won the high jump.
D3. Either Sasha won the 100 meter dash or Josh won the high jump

Observe: We could strengthen the conclusion.

Vault

E1. If Kin uses the remote, the trunk will open.
E2. If Yu tries the handle, the trunk will open.
E3. If Kin uses the remote and Yu tries the handle, the trunk won’t open.
E4. If Kin uses the remote or Yu tries the handle, the trunk will open.

Observe: We cannot regiment the conclusion with inclusive-‘or’.

Question: Can we salvage the validity of this argument?

Conjunction

Exam

F1. Henry failed and Megan passed.
F2. Megan passed and Henry failed.

Observe: Perfectly adequate and valid regimentation.

Gym

G1. Kate took a shower and went to the gym.
G2. Kate went to the gym and took a shower.

Observe: Conjunction in English can track temporal order.

Question: How can we capture the invalidity of this argument in LPL?
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Logical Consequence
LOGIC I

Benjamin Brast-McKie
September 17, 2024

From Last Time. . .

Semantics: For any interpretation I of LPL, the VALUATION function VI
from the wfs of LPL to truth-values is defined:

• VI (φ) = I(φ) if φ is a sentence letter of LPL.

• VI (¬φ) = 1 iff VI (φ) = 0 (i.e., VI (φ) ̸= 1).

• VI (φ ∧ ψ) = 1 iff VI (φ) = 1 and VI (ψ) = 1.

• VI (φ ∨ ψ) = 1 iff VI (φ) = 1 or VI (ψ) = 1 (or both).

• VI (φ → ψ) = 1 iff VI (φ) = 0 or VI (ψ) = 1 (or both).

• VI (φ ↔ ψ) = 1 iff VI (φ) = VI (ψ).

Characteristic Truth Tables: As drawn in the textbook. . .

Complete Truth Tables

Setup: Write the sentence on the top right, add the constituent sentence
letters on the left, and use the characteristic truth tables.

Constituents: We define [φ] to be the set of sentence letters that occur in φ:

• [φ] = {φ} if φ is a sentence letter of LPL.

• For any wfss φ and ψ of LPL, and ⋆ ∈ {∧,∨,→,↔}:

(¬) [¬φ] = [φ];
(⋆) [φ ⋆ ψ] = [φ] ∪ [ψ];

Rows: Add 2n rows for n constituent sentence letters.

Examples: [A ∧ (B ∨ A)] → A, C ↔ ¬C, D.

Tautology: Only 1s under its main connective in its complete truth table.

Contradiction: Only 0s under its main connective in its complete truth table.

Logically Contingent: A 1 and a 0 under its main connective in its complete truth table.

Logical Entailment: On any row of a complete truth table, the consequent has a 1
under its main connective whenever the antecedent does.

Logical equivalence: Identical columns under the main connectives for the sentences.

Satisfiable: There is a row where all wfss have a 1 under all main connectives.

Logical Consequence: The conclusion has a 1 under its main connective in every row
in which every premise has a 1 under its main connectives.



Decidability

Effective Procedure: A finitely describable and (in principle) usable procedure that
always finishes and produces a correct answer to the question
asked, requiring only that the instructions be followed accurately.

Question: How to define the main operators and distribute truth-values?

• Recursively, like the formation rules for the wfs of LPL.

Question: Is it always possible to construct a complete truth table for a wfs?

• Sentences have a finite number of constituent sentence letters.

Decidable: If there is an effective procedure for determining the answer to a
question, that question is decidable.

• It is decidable whether a wfs of LPL is a tautology, etc.

Question: What about a complete truth table for a set of sentences?

• Could require infinitely many sentence letters.

• We might be able to define an infinite table, but we can’t use it.

Question: If one procedure is not effective, couldn’t there be another one?

• It turns out that there is no effective procedure. . .

• There is always an effective procedure for finite sets of sentences.

Validity: So the validity of finite arguments is decidable.

Partial Truth Tables

Worry 1: It is not that effective. . . in practice it is daunting for n > 4.

Partial Truth Tables: Sometimes only one or two lines are needed.

• A → ¬(A ∨ B): not a tautology or contradiction, so contingent.

• B ↔ ¬(A ∨ B) is a contradiction, so we need a complete table.

• C ∨ (A → A) is a tautology, so we need a complete table.

Complete: To affirm equivalence, entailment, and logical consequence.

Partial: To affirm that a set is satisfiable.

Worry 2: Still daunting sometimes.

Worry 3: Definitions all refer to complete truth tables.

• Definition of a complete truth table has some minor ambiguities.

• These could be fixed, but the result is cumbersome.

Heuristic: The truth table definitions are best taken to be a heuristic guide
for grasping the abstract definitions we may now provide.
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Semantic Proofs
LOGIC I

Benjamin Brast-McKie
September 19, 2024

From Before. . .

Semantics: For any interpretation I of LPL, the VALUATION function VI
from the wfs of LPL to truth-values is defined:

• VI (φ) = I(φ) if φ is a sentence letter of LPL.

• VI (¬φ) = 1 iff VI (φ) = 0 (i.e., VI (φ) ̸= 1).

• VI (φ ∧ ψ) = 1 iff VI (φ) = 1 and VI (ψ) = 1.

• VI (φ ∨ ψ) = 1 iff VI (φ) = 1 or VI (ψ) = 1 (or both).

• VI (φ → ψ) = 1 iff VI (φ) = 0 or VI (ψ) = 1 (or both).

• VI (φ ↔ ψ) = 1 iff VI (φ) = VI (ψ).

Formal Definitions

Interpretation: I is an interpretation of LPL iff I(φ) ∈ {1, 0} for every
sentence letter φ of LPL.

Tautology: φ is a tautology iff VI (φ) = 1 for all I .

Contradiction: φ is a contradiction iff VI (φ) = 0 for all I .

Logically Contingent: φ is contingent iff VI (φ) ̸= VJ (φ) for some I and J .

Logical Entailment: φ entails ψ iff VI (φ) ≤ VI (ψ) for all I .

Logical Equivalence: φ is equivalent to ψ iff VI (φ) = VI (ψ) for all I .

Satisfiable: Γ is satisfiable iff VI (γ) = 1 for all γ ∈ Γ for some I .

Logical Consequence: Γ ⊨ φ iff VI (φ) = 1 whenever VI (γ) = 1 for all γ ∈ Γ.

Satisfiability

Which sets of sentences are satisfiable?

Taller

(1) Liza is taller than Sue.

(2) Sue is taller than Paul.

(3) Paul is taller than Liza.



Lost

(4) Kim is either in Somerville or Cambridge.

(5) If Kim is in Somerville, then she is not far from home.

(6) If Kim is not far from home, then she is in Cambridge.

(7) Kim is not in Cambridge.

Validity

Arguments: Sequences of wfss of LPL, not sets.

Valid: For any argument, it is valid iff its conclusion is a logical
consequence of its set of premises.

• Many arguments may have the same set of premises.

• An argument is valid iff its conclusion is true in every inter-
pretation I of LPL to satisfy the set of premises.

Tautology: A wfs φ of LPL is a tautology just in case ⊨ φ.

• Every I of LPL satisfies the empty set.

• Each premise constrains the set of interpretations the conclu-
sion must be true in where the empty set has no constraints.

Weakening: If Γ ⊨ φ, then Γ ∪ Σ ⊨ φ.

• Each wfs of LPL corresponds to a set of all interpretations
which make that sentence true: |φ| := {I : VI (φ) = 1}.

• Is the interpretation set for the conclusion a subset of the
intersection of the premise interpretation sets?

Examples

1. Show that ¬R → ¬Q, P ∧ Q ⊨ P ∧ R.

2. Show that A ∨ B, B → C, A ↔ C ⊨ C.

3. Show that P, P → Q, ¬Q ⊨ A.

4. Show that (P → Q) ↔ (¬Q → ¬P) is a tautology.

5. Show that A ↔ ¬A is a contradiction.

6. Show that {P, P → Q, Q → ¬P} is unsatisfiable.

7. Show that {P → Q, ¬P ∨ ¬Q, Q → P} is satisfiable.

Observe: There seem to be patterns.

Question: How could we systematize these proofs?
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Methods

Truth Tables: Mechanical but tedious.

• Bad if there are lots of sentence letters.

• Good for counterexamples.
A ↔ (B → C), A ∧ ¬B, D ∨ ¬A ⊨ C.

Semantic Arguments: Good if there are lots of sentence letters.
(A ∨ B) → (C ∧ D), ¬C ∧ ¬E ⊨ ¬A.

The Material Conditional

Roses

A1. Sugar is sweet.
A2. The roses are only red if sugar is sweet.

Observe: First paradox of the material conditional.

Vacation

B1. Casey is not on vacation.
B2. If Casey is on vacation, then he is in Paris.

Observe: Second paradox of the material conditional.

Crimson

C1. Mary doesn’t like the ball unless it is crimson.
C2. Mary likes the ball.
C3. If the ball is blue, then Mary likes it.

The Biconditional

Rectangle

D1. The room is a square.
D2. The room is a rectangle.
D3. The room is a square if and only if it is a rectangle.

Work

E1. Kin isn’t a professor.
E2. Sue isn’t a chef.
E3. Kin is a professor just in case Sue is a chef.
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Natural Deduction in PL: Part I
LOGIC I

Benjamin Brast-McKie
October 1, 2024

Review from Last Time. . .

1. Show that A ∨ B, B → C, A ↔ C ⊨ C.

2. Show that {P, P → Q, Q → ¬P} is unsatisfiable.

3. Show that {P → Q, ¬P ∨ ¬Q, Q → P} is satisfiable.

Motivation

Homophonic: Prove that P ∨ Q, ¬P ⊨ Q.

• The semantic proof makes the same inference.
• So why not just draw this inference directly in LPL?
• What are the basic steps we are allowed to make in a proof?

Semantic Proofs: Provide a reasonably efficient way to evaluate validity.

• But they can be cumbersome to write.
• They explain why a logical property or relation holds.
• Doesn’t say how to reason from some premises to a conclusion.
• Thus semantic proofs are not persuasive to the uninitiated.
• Not so for semantic proofs of invalidity, satisfiability, etc.

Logical Consequence: How do we describe the extension of ⊨?

Natural Deduction: How should we describe the patterns of natural deduction?

• What moves can we make in a proof, viz. semantic proofs?
• Want to describe inference itself, starting with the most basic.
• Such inferences hold in virtue of the meanings of the operators.
• Define a proof to be any composition of basic inferences.

Rules: Each operator will have an introduction and elimination rule.

• These rules will describe how to reason with the connectives.
• Want these rules to be valid.
• Also want these rules to be natural.

Metalogic: • This is a completely different approach to formal reasoning.
• Nevertheless, these two approaches have the same extension.
• Our proof system will help us relate to logical consequence.



Basic Anatomy of a Proof

List: Finite list of lines.

Numbers: Every line is numbered.

Sentences: Each line contains exactly one wfs of LPL.

Justification: Each line includes a justification.

Assumptions: The justification for a premise is ‘:PR’.

Bars: A horizontal bar separates the premises from the steps in the proof.

Conclusion: The last line is the conclusion.

Conditional

Elimination: A, A → B, B → C ⊢ C.

• Easy to derive C using →E.
• What if A was excluded from the premises?

Introduction: A → B, B → C ⊢ A → C.

• Need something to work with.
• Want to conclude with a conditional claim.
• Assumption of A justified by ‘:AS’.

Subproofs: Lines in a closed subproof are dead and all else are live.

• →E can only cite to live lines.
• →I can only cite an appropriate subproof.

Assumption

Example: A ⊢ D → [C → (B → A)].

Conjunction

Elimination: A → (B ∧ C), B → D ⊢ A → D.

Introduction: A ∧ B, B → C ⊢ A ∧ C.

Disjunction

Introduction: A ⊢ B ∨ ((A ∨ C) ∨ D).

Elimination: A ∨ (B ∧ C) ⊢ (A ∨ B) ∧ (A ∨ C).
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Natural Deduction in PL: Part II
LOGIC I

Benjamin Brast-McKie
October 1, 2024

Biconditional

Elimination: A ↔ (B → [(A ∧ C) ↔ D]) ⊢ (A ∧ B) → (D → C).

Introduction: A → (B ∧ C), C → (B ∧ A) ⊢ A ↔ C.

Negation and Reiteration

Elimination Rule: ¬¬A ⊢ A. (Double Negation Elimination)

1. A ∨ ¬A. (Law of Excluded Middle)

2. A, ¬A ⊢ B. (Ex Falso Quodlibet)

Introduction Rule: ¬(A ∧ ¬A). (Law of Non-Contradiction)

3. A ⊢ ¬¬A. (Double Negation Introduction)

Proof

Proof: A natural deduction DERIVATION (or PROOF) of a conclusion φ from a
set of premises Γ in PL is any finite sequence of lines ending with φ on
a live line where every line in the sequence is either:

(1) a premise in Γ;

(2) a discharged assumption; or

(3) follows from previous lines by the rules for PL.

Provable: An wfs φ of LPL is DERIVABLE (or PROVABLE) from Γ in PL (i.e., Γ ⊢ φ)
iff there is a natural deduction derivation (proof ) of φ from Γ in PL.

Theorem: A wfs φ is a theorem of PL (often written φ ∈ PL) iff ⊢ φ.

Interderivable: Two wfss φ and ψ of LPL are INTERDERIVABLE (i.e., φ ⊣⊢ ψ) iff both
φ ⊢ ψ and ψ ⊢ φ.

Bottom: We take ⊥ := A∧¬A to abbreviate an arbitrarily chosen contradiction.

Inconsistent: A set of sentences Γ is INCONSISTENT if and only if Γ ⊢ ⊥.



Logical Analysis

Sound and Complete: Γ ⊢ φ iff Γ ⊨ φ.

• ⊢ φ iff ⊨ φ.

• Γ ⊢ ⊥ iff Γ ⊨ ⊥.

Question: How can we tell if an argument is valid?

• Construct a truth table.

• Write a semantic proof.

• Derive the conclusion from the premises.

Question: What if we can mange to find a derivation?

• Natural deduction won’t tell you if there is no proof.

• A semantic proof will yield a counterexample.

Question: How can we tell what the logical properties are for a wfs of LPL?

Tautology? If YES, prove ⊢ φ.

Contradiction? If YES, prove ⊢ ¬φ.

Contingent? If YES, provide two models.

Equivalent? If YES, prove φ ⊣⊢ ψ.

If NO, provide a countermodel.

If NO, provide a model.

If NO, prove ⊢ φ or ⊢ ¬φ.

If NO, provide a countermodel.

Rule Schemata

Task: Compare the rules of inference for PL to their instances.

• Whereas the rules are general, PL proofs are particular.

• But nothing in our PL proofs depend on the particulars.

Question: How might we generalize our proofs beyond any instance?

Rule Schemata: Replace sentence letters in PL proofs with schematic variables.

• Premises are replaced with the lines cited by that rule.

• New rules require new names if we are to use them.

Question: Can we also generalize proofs of theorems?

• These amount to lines that can be added without citing lines.

Derived Schemata: To speed up proofs, we want to derive rule schemata.

• These can then be employed just like our basic rules.

• This avoids having to rewrite the same types of proofs over and over.
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Derivable Schemata

Law of Excluded Middle: ⊢ φ ∨ ¬φ.

Law of Non-Contradiction: ⊢ ¬(φ ∧ ¬φ).

Ex Falso Quodlibet: φ, ¬φ ⊢ ψ.

Hypothetical Syllogism: φ → ψ, ψ → χ ⊢ φ → χ.

Modus Tollens: φ → ψ, ¬ψ ⊢ ¬φ.

Contraposition: φ → ψ ⊢ ¬ψ → ¬φ.

Dilemma: φ ∨ ψ, φ → χ, ψ → χ ⊢ χ.

Disjunctive Syllogism: φ ∨ ψ, ¬φ ⊢ ψ.

∨-Commutativity: φ ∨ ψ ⊢ ψ ∨ φ.

∧-Commutativity: φ ∧ ψ ⊢ ψ ∧ φ.

Biconditional MP: φ ↔ ψ, ¬φ ⊢ ¬ψ.

↔-Commutativity: φ ↔ ψ ⊢ ψ ↔ φ.

Double Negation: ¬¬φ ⊣⊢ φ.

∧-De Morgan’s: ¬(φ ∧ ψ) ⊣⊢ ¬φ ∨ ¬ψ.

∨-De Morgan’s: ¬(φ ∨ ψ) ⊣⊢ ¬φ ∧ ¬ψ.

∨∧-Distribution: φ ∨ (ψ ∧ χ) ⊣⊢ (φ ∨ ψ) ∧ (φ ∨ χ).

∧∨-Distribution: φ ∧ (ψ ∨ χ) ⊣⊢ (φ ∧ ψ) ∨ (φ ∧ χ).

∨∧-Absorption: φ ∨ (φ ∧ ψ) ⊣⊢ φ.

∧∨-Absorption: φ ∧ (φ ∨ ψ) ⊣⊢ φ.

∧-Associativity: φ ∧ (ψ ∧ χ) ⊣⊢ (φ ∧ ψ) ∧ χ.

∨-Associativity: φ ∨ (ψ ∨ χ) ⊣⊢ (φ ∨ ψ) ∨ χ.
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Bottom: We take ⊥ := A∧¬A to abbreviate an arbitrarily chosen contradiction.

Inconsistent: A set of wfss Γ of LPL is INCONSISTENT if and only if Γ ⊢ ⊥.

Ex Falso Quodlibet: φ, ¬φ ⊢ ψ.

Recursive Definitions

Expressions: The expressions of LPL are defined recursively:

• The primitive symbol of LPL are expression of LPL.

• If φ and ψ are expressions of LPL, then so is ⌜φψ⌝.

• Nothing else is an expression of LPL.

Complexity: Comp(φ) is the number of operator instances that occur in φ:

• Comp(φ) = 0 if φ is a sentence letter;

• Comp(¬φ) = Comp(φ) + 1; and

• Comp(φ ⋆ ψ) = Comp(φ) + Comp(ψ) + 1 for ⋆ ∈ {∧,∨,→,↔}.

Constituents: [φ] is the set of sentence letters that occur in φ:

• [φ] = {φ} if φ is a sentence letter of LPL.

• [¬φ] = [φ]; and

• [φ ⋆ ψ] = [φ] ∪ [ψ] if ⋆ ∈ {∧,∨,→,↔}.

Simplicity: Simple(φ) just in case the φ has at most one sentence letter in LPL:

• Simple(φ) if φ is a sentence letter of LPL.

• Simple(¬φ) if Simple(φ); and

• Simple(φ ⋆ ψ) if Simple(φ), Simple(ψ), and [φ] ∩ [ψ] = ∅.

Substitution: We define φ[χ/α] to be the result of replacing every occurrence of the
sentence letter α in φ with χ.

• If φ is a sentence letter, then φ[χ/α] =

{
χ if φ = α,
φ otherwise.

• (¬φ)[χ/α] = ¬(φ[χ/α]); and

• (φ ⋆ ψ)[χ/α] = φ[χ/α] ⋆ ψ[χ/α] if ⋆ ∈ {∧,∨,→,↔}.



Induction Guide

Step 1: Identify the set of elements and the property in question.

Step 2: Partition the set into a sequence of stages to run induction on.

Step 3: Establish that every element in the base stage has the property.

Step 4: Assume every element in stage n (and below) have the property.

Step 5: Show that every element in stage n + 1 have the property.

Examples

Task 1: Every wfs of LPL has an even number of parentheses.

Task 2: All expressions of LPL are finite length.

Task 3: If I(φ) = J (φ) for all φ ∈ [ψ], then VI (ψ) = VJ (ψ).

Task 4: For every wfs φ of LPL, if Simple(φ), then ⊭ φ.

Task 5: For any wfss φ, ψ, χ and sentence letter α of LPL, if ⊨ φ ↔ ψ, then
⊨ χ[φ/α] ↔ χ[ψ/α].

PL Soundness

• Assume Γ ⊢ φ for an arbitrary set wfss Γ and wfs φ of LPL.

• There is some PL derivation X of φ from Γ.

• Let φi be the wfs on the i-th line of the derivation X.

• Let Γi be the set of premises and undischarged assumptions on j ≤ i.

Base Case: Γ1 ⊨ φ1.

• φ1 is either a premise or undischarged assumption.

• Either way, Γ1 = {φ1} since φ1 is not discharged at the first line.

• Γ1 ⊨ φ1 is immediate.

Induction Step: Γn+1 ⊨ φn+1 if Γk ⊨ φk for every k ≤ n. (To be proven separately.)

• By strong induction, Γn ⊨ φn for all n.

• Since every proof is finite in length, there is a last line m of X where
φm = φ is the conclusion.

• Since every assumption in X is eventually discharged, Γm = Γ is the
set of premises.

• Thus Γ ⊨ φ.
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Lemmas

(AS) Γn+1 ⊨ φn+1 if φn+1 is justified by AS.

• Assume that φn+1 is justified by AS.

• So φn+1 is an undischarged assumption at line n + 1.

• So φn+1 ∈ Γn+1 by the definition of Γn+1.

• Γn+1 ⊨ φn+1 follows immediately.

Inheritance: If φk is live at line n of a PL derivation where k ≤ n, then Γk ⊆ Γn.

• Let X be a PL derivation.

• Assume there is some ψ ∈ Γk where ψ /∈ Γn for n > k.

• So ψ has been discharged at a line j > k where j ≤ n.

• So φk is dead at n.

• By contraposition, if φk is live at line n > k, then Γk ⊆ Γn as desired.

(R) Γn+1 ⊨ φn+1 if φn+1 is justified by R.

• Assume that φn+1 is justified by R.

• So φn+1 = φk for some k ≤ n.

• By hypothesis, Γk ⊨ φk.

• Since φk is live at line n + 1, Γk ⊆ Γn+1 by Inheritance (Lemma 4.3).

• So Γn+1 ⊨ φk by Weakening (Lemma 2.1).

• Thus Γn+1 ⊨ φn+1.
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Lemmas

Weakening: If Γ ⊨ φ, then Γ ∪ Σ ⊨ φ.

Inheritance: If φk is live at line n of a PL derivation where k ≤ n, then Γk ⊆ Γn.

Interpretation: If I is a LPL interpretation, then VI (φ) ∈ {1, 0} for all wfss φ of LPL.

Contradiction: If Γ ⊨ φ and Γ ⊨ ¬φ, then Γ is unsatisfiable.

• Assume Γ ⊨ φ and Γ ⊨ ¬φ.

• Assume for contradiction that Γ is satisfiable.

• There is some LPL interpretation I where VI (γ) = 1 for all γ ∈ Γ.

• By assumption, VI (φ) = 1 and VI (¬φ) = 1.

• By the semantics for negation, VI (φ) ̸= 1, contradicting the above.

• Thus Γ is unsatisfiable.

Unsatisfiable: If Γ ∪ {φ} is unsatisfiable, then Γ ⊨ ¬φ.

• Assume Γ ∪ {φ} is unsatisfiable.

• Let I be an arbitrary LPL interpretation where VI (γ) = 1 for all γ ∈ Γ.

• Assume for contradiction that VI (¬φ) = 0.

• So VI (φ) = 1, and so Γ ∪ {φ} is satisfiable contrary to assumption.

• Thus for any I , VI (¬φ) = 1 if VI (γ) = 1 for all γ ∈ Γ.

• By definition, Γ ⊨ ¬φ.

Conditional: If Γ ∪ {φ} ⊨ ψ, then Γ ⊨ φ → ψ.

• Assume Γ ∪ {φ} ⊨ ψ.

• Let I be an arbitrary LPL interpretation where VI (γ) = 1 for all γ ∈ Γ.

• Since VI (φ) ∈ {1, 0} by Interpretation, there are two cases to consider.

Case 1: Assume VI (φ) = 1.
– So VI (γ) = 1 for all γ ∈ Γ ∪ {φ}.
– So VI (ψ) = 1 by the starting assumption.
– Thus VI (φ → ψ) = 1 by the semantics for the conditional.

Case 2: Assume VI (φ) = 0.
– So VI (φ → ψ) = 1 by the semantics for the conditional.

• So VI (φ → ψ) = 1 in both cases.

• Thus Γ ⊨ φ → ψ follows by generalizing on I .



PL Deduction Rules

Induction Hypothesis: Recall the assumption that Γk ⊨ φk for all k ≤ n.

(¬I) Proof: Γn+1 ⊨ φn+1 if φn+1 is justified by ¬I.

• There is a subproof from φ on line i with ψ at line j and ¬ψ at line k.

• By hypothesis Γj ⊨ ψ and Γk ⊨ ¬ψ, where Γj, Γk ⊆ Γn+1 ∪ {φi}.

• By Weakening, Γn+1 ∪ {φi} ⊨ ψ and Γn+1 ∪ {φi} ⊨ ¬ψ.

• So Γn+1 ∪ {φi} is unsatisfiable by Contradiction.

• So Γn+1 ⊨ φn+1 by Unsatisfiable.

(∧I) Proof: Γn+1 ⊨ φn+1 if φn+1 is justified by ∧I.

• φn+1 = φi ∧ φj where lines i, j ≤ n are live at n + 1.

• By hypothesis, Γi ⊨ φi and Γj ⊨ φj.

• By Inheritance, Γi, Γj ⊆ Γn+1.

• By Weakening, Γn+1 ⊨ φi and Γn+1 ⊨ φj.

• Let I be a LPL interpretation where VI (γ) = 1 for all γ ∈ Γn+1.

• So VI (φi) = VI (φj) = 1, and so VI (φi ∧ φj) = 1 by the semantics.

• Thus Γn+1 ⊨ φn+1 by generalizing on I .

(→I) Proof: Γn+1 ⊨ φn+1 if φn+1 is justified by →I.

• So φn+1 = φi → φj, where there is a subproof of φj from φi.

• By hypothesis Γj ⊨ φj, where Γj ⊆ Γn+1 ∪ {φi}.

• By Weakening, Γn+1 ∪ {φi} ⊨ φj.

• By Conditional, Γn+1 ⊨ φi → φj, and so Γn+1 ⊨ φn+1.

(→E) Proof: Γn+1 ⊨ φn+1 if φn+1 is justified by →E.

• So φi = φj → φn+1 where the lines i, j ≤ n + 1 are live at n + 1.

• By hypothesis Γi ⊨ φi and Γj ⊨ φj.

• By Inheritance, Γi, Γj ⊆ Γn+1.

• By Weakening, Γn+1 ⊨ φi and Γn+1 ⊨ φj, and so Γn+1 ⊨ φj → φn+1.

• Let I be a LPL interpretation where VI (γ) = 1 for all γ ∈ Γn+1.

• Thus VI (φj) = 1 and VI (φj → φn+1) = 1.

• By the semantics, VI (φj) = 0 or VI (φn+1) = 1.

• To avoid contradiction, VI (φn+1) = 1.

• Thus Γn+1 ⊨ φn+1 follows from by generalizing on I .
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Consistency

Corollary: If Γ is inconsistent, then Γ is unsatisfiable.

• Assume Γ is inconsistent, so Γ ⊢ ⊥.

• Thus Γ ⊨ ⊥ follows by PL SOUNDNESS.

• Assume for reductio that Γ is satisfiable.

• So VI (γ) = 1 for all γ ∈ Γ.

• So VI (⊥) = 1, i.e., VI (A ∧ ¬A) = 1.

• By the semantics, VI (A) = 1 and VI (¬A) = 1, so VI (A) ̸= 1.

• By reductio, Γ is unsatisfiable.

Contrapositive: If Γ is satisfiable, then Γ is consistent.

• The inconsistency of Γ may be witnessed by a derivation of ⊥ from Γ.

• There are no witnesses that ⊥ can’t be derived from a consistent set.

• We would somehow need to survey the space of all derivations.

• Could try a reductio, but this is hardly promising.

• Rather, we need only find an interpretation to witness satisfiability.

Theorems: How do we know that the theorems of PL are consistent?

• Because every theorem is a tautology by PL SOUNDNESS.

• So every interpretation witnesses the truth of all of the theorems.

• So the set of theorems are indeed consistent.

• Otherwise we could derive anything from nothing.

Strength: Let (φ) := {χ : φ ⊢ χ} be the wfs of LPL derivable from φ.

• We may show that (ψ) ⊆ (φ) if φ ⊢ ψ.

• So (φ) provides a way to think about the STRENGTH of φ.

• Observe that φ ∈ (⊥) for every wfs φ of LPL.

• Strength is good, but not if it explodes into inconsistency.

More Derivations

Hypothetical Syllogism: φ → ψ, ψ → χ ⊢ φ → χ.

Modus Tollens: φ → ψ, ¬ψ ⊢ ¬φ.

Contraposition: φ → ψ ⊢ ¬ψ → ¬φ.

Disjunctive Syllogism: φ ∨ ψ, ¬φ ⊢ ψ.

Biconditional MP: φ ↔ ψ, ¬φ ⊢ ¬ψ.
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Corollary 4.2 If Γ is satisfiable, then Γ is consistent.

• This followed from PL SOUNDNESS.

• We will now establish the converse of Corollary 4.2 as a theorem.

• PL COMPLETENESS will follow as a corollary.

Completeness Proof

Theorem 5.1 If Γ is consistent, then Γ is satisfiable.

Lemma 2.3 Γ ⊨ φ just in case Γ ∪ {¬φ} is unsatisfiable.

Corollary 5.3 (PL Completeness) If Γ ⊨ φ, then Γ ⊢ φ.

• Assume Γ ⊨ φ.

• Γ ∪ {¬φ} is unsatisfiable by Lemma 2.3.

• Γ ∪ {¬φ} is inconsistent by Theorem 5.1.

• Γ ⊢ ¬¬φ by Lemma 5.1, so there is a PL derivation X of ¬¬φ from Γ.

• Γ ⊢ φ by an additional application of DN to X.

Basic Lemmas

Lemma 5.1 If Λ ∪ {φ} is inconsistent, then Λ ⊢ ¬φ.

• Assume Λ ∪ {φ} is inconsistent.

• So Λ ∪ {φ} ⊢ ⊥, so X is a derivation of A ∧ ¬A from Λ.

• Let X′ prefix X with φ as an assumption replacing φ as a premise.

• Append lines for A and ¬A by ∧E.

• Discharge φ, concluding ¬φ by ¬I, so Λ ⊢ φ.

Lemma 5.2 If Λ ⊢ φ and Λ ⊢ ¬φ, then Λ is inconsistent.

• Assume Λ ⊢ φ and Λ ⊢ ¬φ.

• X derives φ from Λ, and Y derives ¬φ from Λ.

• Let Z append Y to X, renumbering lines.

• Use EFQ on the last lines of X and Y to derive ⊥ from Λ.

• By definition, Λ is inconsistent.



Lemma 5.3 If Λ ∪ {φ} and Λ ∪ {¬φ} are both inconsistent, then Λ is inconsistent.

• Assume Λ ∪ {φ} and Λ ∪ {¬φ} are both inconsistent.

• Λ ⊢ ¬φ and Λ ⊢ ¬¬φ by Lemma 5.1.

• Thus Λ is inconsistent by Lemma 5.4.

Henkin Interpretation

Maximal: A set of wfss ∆ is MAXIMAL in LPL just in case for every wfs ψ in LPL

either ψ ∈ ∆ or ¬ψ ∈ ∆.

Enumeration: Let ψ0, ψ1, ψ2, . . . enumerate all wfss in LPL.

Maximization: We may now extend Γ to a maximal set as follows:

• ∆0 = Γ

• ∆n+1 =

{
∆n ∪ {ψn} if ∆n ∪ {ψn} is consistent
∆n ∪ {¬ψn} otherwise.

• ∆Γ =
⋃

i∈N ∆n.

Henkin Interpretation: For all sentence letters φ of LPL, let: I∆(φ) =

{
1 if φ ∈ ∆Γ

0 otherwise.

Satisfiable: It remains to show that VI∆(γ) = 1 for all γ ∈ Γ.

• This will allow us to conclude that Γ is satisfiable.

Lindenbaum’s Lemmas

Lemma 5.4 If Γ is consistent in LPL, then ∆Γ is maximal consistent.

• Assume Γ is consistent and let φ be any wfs of LPL.

• φ = ψi for some i ∈ N given the enumeration above.

• Either ψi ∈ ∆i+1 or ¬ψi ∈ ∆i+1.

• Since ∆i+1 ⊆ ∆Γ, either φ ∈ ∆Γ or ¬φ ∈ ∆Γ, and so ∆Γ is maximal.

Base Case: Immediate by the assumption that ∆0 = Γ is consistent.

Induction Step: Assume for weak induction that ∆n is consistent.

• ∆n ∪ {ψn} is either consistent or not.

Case 1: If ∆n ∪ {ψn} is consistent, then ∆n+1 = ∆n ∪ {ψn} is consistent.

Case 2: If ∆n ∪ {ψn} is not consistent, then ∆n+1 = ∆n ∪ {¬ψn}.

• Assume for contradiction that ∆n ∪ {¬ψn} is inconsistent.

• So ∆n is inconsistent by Lemma 5.2, contradicting the above.

• So ∆n+1 is consistent in both cases, and so ∆k is consistent for all k ∈ N.
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Limit: Assume for contradiction that ∆Γ is inconsistent.

• X is a PL derivation of ⊥ from ∆Γ in a finite number of lines.

• Let m ∈ N be the first number where ∆m includes all premises in X.

• So ∆m ⊢ ⊥, and so ∆k is inconsistent for some k ∈ N.

• Since this contradicts the above, ∆Γ is consistent.

Deductive Closure

Deductive Closure: A set ∆ of wfss of LPL is DEDUCTIVELY CLOSED in PL just in case for
any wfs φ of LPL, if ∆ ⊢ φ, then φ ∈ ∆.

Lemma 5.5 If ∆ is maximal consistent, then ∆ is deductively closed.

• Assume ∆ is maximal consistent.

• Let φ be a wfs of LPL where ∆ ⊢ φ.

• Assume for contradiction that ¬φ ∈ ∆.

• X derives ¬φ from ∆ by R, so ∆ ⊢ ¬φ.

• By Lemma 5.4, ∆ is inconsistent, contradicting the above.

• So ¬φ /∈ ∆, and so φ ∈ ∆ by maximality.

• Generalizing on φ, we may conclude that ∆ is deductively closed.
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Theorem 5.1 If Γ is consistent, then Γ is satisfiable.

Corollary 5.3 (PL Completeness) If Γ ⊨ φ, then Γ ⊢ φ.

Basic Lemmas

Lindenbaum’s Lemma: If Γ is consistent in LPL, then ∆Γ is maximal consistent.

Deductive Closure: A set ∆ of wfss of LPL is DEDUCTIVELY CLOSED in PL just in case for
any wfs φ of LPL, if ∆ ⊢ φ, then φ ∈ ∆.

Lemma 5.5 If ∆ is maximal consistent, then ∆ is deductively closed.

Lemma 5.6 If Λ ⊢ φ, then Λ ∪ Π ⊢ φ.

• Assuming that Λ ⊢ φ, there is a derivation X of φ from Λ in PL.

• Since Λ ⊆ Λ ∪ Π, X is also a derivation of φ from Λ ∪ Π in PL.

• Thus Λ ∪ Π ⊢ φ.

Henkin Interpretation

Maximal: A set of wfss ∆ is MAXIMAL in LPL just in case for every wfs ψ in LPL

either ψ ∈ ∆ or ¬ψ ∈ ∆.

Enumeration: Let ψ0, ψ1, ψ2, . . . enumerate all wfss in LPL.

Maximization: We may now extend Γ to a maximal set as follows:

• ∆0 = Γ

• ∆n+1 =

{
∆n ∪ {ψn} if ∆n ∪ {ψn} is consistent
∆n ∪ {¬ψn} otherwise.

• ∆Γ =
⋃

i∈N ∆n.

Henkin Interpretation: For all sentence letters φ of LPL, let: I∆(φ) =

{
1 if φ ∈ ∆Γ

0 otherwise.

Satisfiable: It remains to show that VI∆(γ) = 1 for all γ ∈ Γ.

• This will allow us to conclude that Γ is satisfiable.



Henkin Lemmas Continued

Lemma 5.7 If ∆ is a maximal consistent set of wfss of LPL, then every wfs φ of LPL

is such that VI∆(φ) = 1 just in case φ ∈ ∆.

• Assume ∆ is a maximal consistent set of LPL wfss.

• The proof goes by induction on complexity.

Base: Assume Comp(φ) = 0, so φ is a sentence letter.

• VI∆(φ) = 1 iff I∆(φ) = 1 by the semantics.

iff φ ∈ ∆ by the definition of I∆.

• Thus whenever Comp(φ) = 0: VI∆(φ) = 1 iff φ ∈ ∆.

Induction: Assume that whenever Comp(φ) ≤ n: VI∆(φ) = 1 iff φ ∈ ∆.

• Let φ be a wfs of LPL where Comp(φ) = n + 1.

• There are five cases to consider, one for each operator.

Case 1: VI∆(¬ψ) = 1 iff VI∆(ψ) = 0 by the semantics.

iff ψ /∈ ∆ by hypothesis since Comp(ψ) ≤ n.

iff ¬ψ ∈ ∆ by maximal consistency.

Case 2: VI∆(ψ ∧ χ) = 1 iff VI∆(ψ) = VI∆(χ) = 1 by the semantics.

iff ψ, χ ∈ ∆ by hypothesis since Comp(ψ), Comp(χ) ≤ n.

iff ψ ∧ χ ∈ ∆ by (∗).
(∗) If ψ ∧ χ ∈ ∆, then ∆ ⊢ ψ and ∆ ⊢ χ by ∧E.

• So ψ, χ ∈ ∆ by Lemma 5.5.

• If ψ, χ ∈ ∆, then ∆ ⊢ ψ ∧ χ by ∧I.

• So ψ ∧ χ ∈ ∆ by Lemma 5.5.

Case 3: Exercise for this weeks PSet.

Case 4: VI∆(ψ → χ) = 1 iff VI∆(ψ) = 0 or VI∆(χ) = 1 by the semantics.

iff ψ /∈ ∆ or χ ∈ ∆ hypothesis since Comp(ψ), Comp(χ) ≤ n.

iff ψ → χ ∈ ∆ by (†) and (‡).

(†) If ψ /∈ ∆, then ¬ψ ∈ ∆ by maximality.

• Since ¬ψ ⊢ ψ → χ and ¬ψ ∈ ∆, we know ∆ ⊢ ψ → χ by Lemma 5.6.

• Thus ψ → χ ∈ ∆ by Lemma 5.5.

• If χ ∈ ∆, then since χ ⊢ ψ → χ, we know ∆ ⊢ ψ → χ by Lemma 5.6.

• So if either ψ /∈ ∆ or χ ∈ ∆, then ψ → χ ∈ ∆.

(‡) Assume instead that ψ → χ ∈ ∆.

• If ψ /∈ ∆, then ψ /∈ ∆ or χ ∈ ∆.
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• If ψ ∈ ∆, then ∆ ⊢ χ by the rule →E, and so χ ∈ ∆ by Lemma 5.5.

• So if ψ → χ ∈ ∆, then ψ /∈ ∆ or χ ∈ ∆.

Case 5: Exercise for this weeks PSet.

Conclusion: So whenever Comp(φ) = n + 1: VI∆(φ) = 1 just in case φ ∈ ∆.

• Thus for all wfss φ of LPL: VI∆(φ) = 1 iff φ ∈ ∆.

Satisfiability

Lemma 5.8 Γ ⊆ ∆Γ.

• Immediate from the definition.

Theorem 5.1 If Γ is consistent, then Γ is satisfiable.

• Let Γ be a consistent set of wfss of LPL.

• ∆Γ is a maximal consistent by Lemma 5.5.

• Let ∆ = ∆Γ and I∆ be the Henkin interpretation of LPL defined above.

• By Lemma 5.7, for every wfs φ of LPL: VI (φ) = 1 just in case φ ∈ ∆.

• Thus VI (φ) = 1 for all φ ∈ ∆.

• Since Γ ⊆ ∆ by Lemma 5.8, VI (φ) = 1 for all φ ∈ Γ.

• By definition, Γ is satisfiable.

Compactness

Corollary 5.4 If Γ ⊨ φ, then there is a finite subset Λ ⊆ Γ where Λ ⊨ φ.

• Assume Γ ⊨ φ.

• Γ ⊢ φ by completeness, and so X derives φ from Γ.

• ΓX ⊢ φ where ΓX is the set of premises in X.

• ΓX ⊨ φ by soundness.

• Since X is finite, ΓX is also finite.

Corolary 5.5 Γ is satisfiable if every finite subset Λ ⊆ Γ is satisfiable.

• Assume for contraposition that Γ is unsatisfiable.

• Γ ⊨ ⊥ follows vacuously.

• Λ ⊨ ⊥ by Corollary 5.4 for some finite subset Λ ⊆ Γ.

• So some finite subset Λ ⊆ Γ is unsatisfiable.

• By contraposition, QED.
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Midterm Review
LOGIC I

Benjamin Brast-McKie
October 21, 2024

Derivable Schemata

Contraposition: φ ⊃ ψ ⊢ ¬ψ ⊃ ¬φ.

Hypothetical Syllogism: φ ⊃ ψ, ψ ⊃ χ ⊢ φ ⊃ χ.

Disjunctive Syllogism: φ ∨ ψ, ¬φ ⊢ ψ.

∨-Conditional: φ ⊃ ψ ⊣⊢ ¬φ ∨ ψ.

¬-Conditional: ¬(φ ⊃ ψ) ⊣⊢ φ ∧ ¬ψ.

Conditional Weakening: ψ ⊢ φ ⊃ ψ.

Double Negation: ¬¬φ ⊣⊢ φ.

∧-De Morgan’s: ¬(φ ∧ ψ) ⊣⊢ ¬φ ∨ ¬ψ.

∨-De Morgan’s: ¬(φ ∨ ψ) ⊣⊢ ¬φ ∧ ¬ψ.

Modus Tollens: φ ⊃ ψ, ¬ψ ⊢ ¬φ.

Regimentation

Complete the following tasks for arguments (A) and (B):

Task 1: Write a symbolization key and regiment the argument.

Task 2: Determine if the argument is valid.

Task 3: Provide a derivation in PL if valid, and a countermodel otherwise.

(A) If Dorothy plays the piano in the morning, then Roger wakes up
cranky. Dorothy plays piano in the morning unless she is distracted.
So if Roger does not wake up cranky, then Dorothy must be distracted.

(B) If Cam remembered to do his chores, then things are clean but not neat.
Cam forgot only if things are neat but not clean. Therefore, things are
clean just in case they are not neat.



Regimentation and Relations
LOGIC I

Benjamin Brast-McKie
November 2, 2023

Restricting Quantifiers

Universals Quantifiers: Regiment the following sentences:

• All dogs go to heaven.

• Jim took every chance he got.

• All the monkeys that Amar loves love him back.

• Everyone who trained hard or got lucky made it to the top or else
didn’t compete.

Hidden Quantifiers: Regiment the following sentences:

• At least the guests that remained were pleased with the party.

• I haven’t met a cat that likes Merra.

• Kiko’s only friends are animals.

Existential Quantifiers: Regiment the following sentences:

• Something great is around the corner.

• One of Ken’s statues is very old.

• Kate found a job that she loved.

Mixed Quantifiers

1. Nothing is without imperfections.

2. Every dog has its day.

3. Everyone loves someone.

4. Nobody knows everybody.

5. Everybody everybody loves loves somebody.

6. No set is a member of itself.

7. There is a set with no members.



Arguments

Love: Regiment the following argument:

• Cam doesn’t love anyone who loves him back.

• May loves everyone who loves themselves.

.˙. If Cam loves himself, he doesn’t love May.

Bigger: Regiment the following argument:

• Whenever something is bigger than another, the latter is not
bigger than the former.

.˙. Nothing is bigger than itself.

Relations

Domain: Let the domain D be any set.

Relation: A relation R on D is any subset of D2.

Reflexive: A relation R is reflexive on D iff ⟨x, x⟩ ∈ R for all x ∈ D.

Non-Reflexive: A relation R is non-reflexive on D iff R is not reflexive on D.

Question 1: What is it to be irreflexive?

Irreflexive: A relation R is irreflexive on D iff ⟨x, x⟩ /∈ R for all x ∈ D.

Symmetric: A relation R is symmetric iff ⟨y, x⟩ ∈ R whenever x, y ∈ R.

Question 2: Why don’t we need to specify a domain?

Question 3: Why is a relation reflexive or irreflexive with respect to a domain?

Asymmetric: A relation R is asymmetric iff ⟨y, x⟩ /∈ R whenever ⟨x, y⟩ ∈ R.

Question 4: What is it to be non-symmetric? How about non-asymmetric?

Task 1: Show that every asymmetric relation is irreflexive.

Transitive: A relation R is transitive iff ⟨x, z⟩ ∈ R whenever ⟨x, y⟩, ⟨y, z⟩ ∈ R.

Intransitive: A relation R is intransitive iff ⟨x, z⟩ /∈ R whenever ⟨x, y⟩, ⟨y, z⟩ ∈ R.

Question 5: Is every symmetric transitive relation reflexive? (No: R = ∅)

Task 2: Show that every transitive irreflexive relation asymmetric?

Euclidean: A relation R is euclidean iff ⟨y, z⟩ ∈ R whenever ⟨x, y⟩, ⟨x, z⟩ ∈ R.

Task 3: Show that every transitive symmetric relation is euclidean.
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The Semantics for QL
LOGIC I

Benjamin Brast-McKie
November 7, 2023

Examples

Monadic: Casey is dancing.

Dyadic: Al loves Max.

Triadic: Kim is between Boston and New York.

Constants and Referents

Constants: Constants are interpreted as referring to individuals.

Existence: Thus we need to know what things there are.

Domain: A domain is any nonempty set D.

Referents: Interpretations assign constants to elements of D.

Question 1: How are we going to interpret predicates?

Predicates and Extensions

Example: ‘Al loves Max’ is true iff Al bears the loves-relation to Max.

Dyadic Predicates: Dyadic predicates are interpreted by sets of ordered pairs in D2.

Question 2: How are we to interpret n-place predicates?

Cartesian Power: Dn = {⟨x1, . . . , xn⟩ : x1, . . . , xn ∈ D}.

Extensions: n-place predicates are interpreted by subsets of Dn.

Singletons: 1-place predicates are interpreted by subsets of D1 = {⟨x⟩ : x ∈ D}.

Question 3: How are we to interpret 0-place predicates? What is D0?

n-Tuples: Let ⟨x1, . . . , xn⟩ = {⟨1, x1⟩, . . . , ⟨n, xn⟩}.

0-Tuple: ⟨⟩ = ∅.

Truth-Values: 0-place predicates are interpreted by subsets of D0 = {∅}.

Ordinals: Let 1 = {∅} and 0 = ∅ be the first two von Neumann ordinals.



QL Models

Interpretations: I is an QL interpretation over D iff both:

• I(α) ∈ D for every constant α in QL.

• I(F n) ⊆ Dn for every n-place predicate F n.

Question 4: What happens if D = ∅?

Model: M = ⟨D, I⟩ is a model of QL iff I is a QL interpretation over D ̸= ∅.

Task 1: Regiment and interpret the sentences above.

• Dc, Lam, Bkbn.

• D = {c, a, m, k, b, n}.

• I(D) = {⟨c⟩}.

• I(L) = {⟨a, m⟩}.

• I(B) = {⟨k, b, n⟩}.

• I(c) = c, I(a) = a, . . .

Lagadonian: We often take constants to name themselves.

Question 5: Do models give us truth-values?

Variable Assignments

Assignments: A variable assignment â(α) ∈ D for every variable α in QL.

Singular Terms: We may define the referent of α in M = ⟨D, I⟩ as follows:

V â
I (α) =

{
I(α) if α is a constant
â(α) if α is a variable.

Variants: A ĉ is an α-variant of â iff ĉ(β) = â(β) for all β ̸= α.

Example: Let D = {1, 2, 3, 4, 5} where â(x) = 1, â(y) = 2, and â(z) = 3.

Task 2: If ĉ is a y-variant of â, what is ĉ(1), ĉ(2), and ĉ(3)?

Example

Universal: Al loves everything, i.e., ∀xLax.

Existential: Someone is dancing, i.e., ∃x(Px ∧ Dx).

Mixed: Everyone loves someone, i.e., ∀x(Px ⊃ ∃yLxy).

Complex: Everything everything loves loves something, i.e., ∀x(∀yLyx ⊃ ∃zLxz).
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Semantics for QL

(A) V â
I (F nα1, . . . , αn) = 1 iff ⟨V â

I (α1), . . . ,V â
I (αn)⟩ ∈ I(F n).

(∀ ) V â
I (∀αφ) = 1 iff V ĉ

I (φ) = 1 for every α-variant ĉ of â.

(∃ ) V â
I (∃αφ) = 1 iff V ĉ

I (φ) = 1 for some α-variant ĉ of â.

(¬) V â
I (¬φ) = 1 iff V â

I (φ) = 0.

(∨) V â
I (φ ∨ ψ) = 1 iff V â

I (φ) = 1 or V â
I (ψ) = 1 (or both).

(∧) V â
I (φ ∧ ψ) = 1 iff V â

I (φ) = 1 and V â
I (ψ) = 1.

(⊃) V â
I (φ ⊃ ψ) = 1 iff V â

I (φ) = 0 or V â
I (ψ) = 1 (or both).

(≡) V â
I (φ ≡ ψ) = 1 iff V â

I (φ) = V â
I (ψ).

Truth and Entailment

Truth: VI (φ) = 1 iff V â
I (φ) = 1 for some â where φ is a sentence of QL.

Satisfaction: M = ⟨D, I⟩ satisfies Γ iff VI (φ) = 1 for every φ ∈ Γ.

Singletons: As before M satisfies φ iff M satisfies {φ}.

Entailment: Γ ⊨ φ just in case every model M that satisfies Γ also satisfies φ.

Tautology: φ is a tautology iff ⊨ φ.

Contradiction: φ is a contradiction iff ⊨ ¬φ.

Contingent: φ is contingent iff ⊨ and ⊬ ¬φ.

Consistent: Γ is consistent iff Γ is satisfiable.

Minimal Models

Task 3: Provide minimal models in which the examples above are true/false.

Regimentation

• Every rose has its thorn.

• At least the guests that remained were pleased with the party.

• I haven’t met a cat that likes Merra.

• Kate found a job that she loved.

• Everybody everybody loves loves somebody.

• No set is a member of itself.

• There is a set with no members.
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Arguments

Love: Regiment the following argument:

• Cam doesn’t love anyone who loves him back.

• May loves everyone who loves themselves.

. ˙. If Cam loves himself, he doesn’t love May.

Bigger: Regiment the following argument:

• Whenever something is bigger than another, the latter is not
bigger than the former.

. ˙. Nothing is bigger than itself.

Relations

Domain: Let the domain D be any set.

Relation: A relation R on D is any subset of D2.

Reflexive: A relation R is reflexive on D iff ⟨x, x⟩ ∈ R for all x ∈ D.

Non-Reflexive: A relation R is non-reflexive on D iff R is not reflexive on D.

Question 1: What is it to be irreflexive?

Irreflexive: A relation R is irreflexive on D iff ⟨x, x⟩ /∈ R for all x ∈ D.

Symmetric: A relation R is symmetric iff ⟨y, x⟩ ∈ R whenever x, y ∈ R.

Question 2: Why don’t we need to specify a domain?

Question 3: Why is a relation reflexive or irreflexive with respect to a domain?

Asymmetric: A relation R is asymmetric iff ⟨y, x⟩ /∈ R whenever ⟨x, y⟩ ∈ R.

Question 4: What is it to be non-symmetric? How about non-asymmetric?

Task 1: Show that every asymmetric relation is irreflexive.

Transitive: A relation R is transitive iff ⟨x, z⟩ ∈ R whenever ⟨x, y⟩, ⟨y, z⟩ ∈ R.

Intransitive: A relation R is intransitive iff ⟨x, z⟩ /∈ R whenever ⟨x, y⟩, ⟨y, z⟩ ∈ R.

Question 5: Is every symmetric transitive relation reflexive? (No: R = ∅)

Task 2: Show that every transitive irreflexive relation asymmetric?

Euclidean: A relation R is euclidean iff ⟨y, z⟩ ∈ R whenever ⟨x, y⟩, ⟨x, z⟩ ∈ R.

Task 3: Show that every transitive symmetric relation is euclidean.
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Minimal Models and Variable Assignments
LOGIC I

Benjamin Brast-McKie
November 9, 2023

QL Models

Interpretations: I is an QL interpretation over D iff both:

• I(α) ∈ D for every constant α in QL.

• I(F n) ⊆ Dn for every n-place predicate F n.

Model: M = ⟨D, I⟩ is a model of QL iff I is a QL interpretation over D ̸= ∅.

Variable Assignments

Assignments: A variable assignment â(α) ∈ D for every variable α in QL.

Singular Terms: We may define the referent of α in M = ⟨D, I⟩ as follows:

V â
I (α) =

{
I(α) if α is a constant
â(α) if α is a variable.

Variants: A ĉ is an α-variant of â iff ĉ(β) = â(β) for all β ̸= α.

Semantics for QL

(A) V â
I (F nα1, . . . , αn) = 1 iff ⟨V â

I (α1), . . . ,V â
I (αn)⟩ ∈ I(F n).

(∀ ) V â
I (∀αφ) = 1 iff V ĉ

I (φ) = 1 for every α-variant ĉ of â.

(∃ ) V â
I (∃αφ) = 1 iff V ĉ

I (φ) = 1 for some α-variant ĉ of â.

(¬) V â
I (¬φ) = 1 iff V â

I (φ) ̸= 1.

(∨) V â
I (φ ∨ ψ) = 1 iff V â

I (φ) = 1 or V â
I (ψ) = 1 (or both).

(∧) V â
I (φ ∧ ψ) = 1 iff V â

I (φ) = 1 and V â
I (ψ) = 1.

(⊃) V â
I (φ ⊃ ψ) = 1 iff V â

I (φ) = 0 or V â
I (ψ) = 1 (or both).

(≡) V â
I (φ ≡ ψ) = 1 iff V â

I (φ) = V â
I (ψ).

Truth: VI (φ) = 1 iff V â
I (φ) = 1 for some â where φ is a sentence of QL.



Assignment Lemmas

Lemma 1: If â(α) = ĉ(α) for all free variables α in a wff φ, then V â
I (φ) = V ĉ

I (φ).

• Goes by routine induction on complexity.

Lemma 2: For any sentence φ: VI (φ) = 1 iff V â
I (φ) = 1 for every v.a. â over D.

LTR: Assume VI (φ) = 1, so V â
I (φ) = 1 for some v.a. ĉ over D .

• Let â be any v.a. over D.

• Since φ has no free variables, V â
I (φ) = V ĉ

I (φ) by Lemma 1.

• So V â
I (φ) = 1 for all v.a. ĉ over D.

RTL: Assume V â
I (φ) = 1 for all v.a. â over D.

• Since D is nonempty, there is some v.a. â, and so VI (φ) = 1.

Lemma 3: For any sentence φ: VI (φ) ̸= 1 iff V â
I (φ) ̸= 1 for some v.a. â over D.

Minimal Models

Task 1: Provide minimal models in which the following are true/false.

• Al loves everything, i.e., ∀xLax.

True: Let â be a v.a. over D = {a}.

– Let ĉ be any x-variant of â.

– So ĉ(x) = a and I(a) = a.

– Since I(L) = {⟨a, a⟩}, we know ⟨V ĉ
I (a),V ĉ

I (x)⟩ ∈ I(L).

– So V ĉ
I (Lax) = 1, and so V â

I (∀xLax) = 1.

False: Let D = {a} and I(L) = ∅.

– Assume VI (∀xLax) = 1 for contradiction.

– So V â
I (∀xLax) = 1 for some v.a. â.

– So V â
I (Lax) = 1 since â is an x-variant of itself.

– So ⟨V â
I (a),V â

I (x)⟩ ∈ I(L), and so I(L) ̸= ∅.

• Someone is dancing, i.e., ∃x(Px ∧ Dx).

True: Let â be a v.a. over D = {a} where a(x) = a.

– Since I(P) = I(D) = {⟨a⟩}, we know ⟨V â
I (x)⟩ ∈ I(P) = I(D).

– So V â
I (Px) = V â

I (Dx) = 1, and so V â
I (Px ∧ Dx) = 1.

– Since â is a x-variant of itself, V â
I (∃x(Px ∧ Dx)) = 1.

– Thus VI (∃x(Px ∧ Dx)) = 1.
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False: Let D = {a} and I(P) = ∅.
– Assume VI (∃x(Px ∧ Dx)) = 1 for contradiction.
– So V â

I (∃x(Px ∧ Dx)) = 1 for some v.a. â.
– So V ĉ

I (Px ∧ Dx) = 1 for some x-variant ĉ of â.
– So V ĉ

I (Px) = 1, and so ⟨V ĉ
I (x)⟩ ∈ I(P).

– Thus I(P) ̸= ∅.

• No set is a member of itself. [contingent]
¬∃x(Sx ∧ x ∈ x)

• There is a set with no members. [contingent]
∃x(Sx ∧ ∀y(y /∈ x))

• Everyone loves someone. [contingent]
∀x(Px ⊃ ∃yLxy).

• The guests that remained were pleased with the party. [contingent]
∀x(Rxp ⊃ Px).

• I haven’t met a cat that likes Merra. [contingent]
¬∃x(Mbx ∧ Cx ∧ Lmx)

• Kate found a job that she loved. [contingent]
∃x(Fkx ∧ Jx ∧ Lkx)

• Everything everything loves loves something. [contingent]
∀x(∀yLyx ⊃ ∃zLxz).

Quantifier Exchange

(¬∀) ¬∀xφ ⊨ ∃x¬φ.

LTR: Let M = ⟨D, I⟩ satisfy ¬∀xφ.
• So V â

I (¬∀xφ) = 1 for some v.a. â.
• So V â

I (∀xφ) ̸= 1.
• So V ĉ

I (φ) ̸= 1 for some x-variants ĉ of â.
• So V ĉ

I (¬φ) = 1 for some x-variants ĉ of â.
• So V â

I (∃x¬φ) = 1, and so VI (∀x¬φ) = 1.

(¬∃) ¬∃xφ ⊨ ∀x¬φ.

LTR: Let M = ⟨D, I⟩ satisfy ¬∃xφ.
• So V â

I (¬∃xφ) = 1 for some v.a. â.
• So V â

I (∃xφ) ̸= 1.
• So V ĉ

I (φ) ̸= 1 for all x-variants ĉ of â.
• So V ĉ

I (¬φ) = 1 for all x-variants ĉ of â.
• So V â

I (∀x¬φ) = 1, and so VI (∀x¬φ) = 1.
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Arguments

Bigger: Regiment the following argument:

• Whenever something is bigger than another, the latter is not
bigger than the former.
∀x∀y(Bxy ⊃ ¬Byx).

. ˙. Nothing is bigger than itself.
¬∃xBxx.

Proof: Let M = ⟨D, I⟩ be any model which satisfies the premise.

• So V â
I (∀x∀y(Bxy ⊃ ¬Byx)) = 1 for some v.a. â.

• Assume VI (¬∃xBxx) ̸= 1 for contradiction.
• So V â

I (¬∃xBxx) ̸= 1 in particular.
• So V â

I (∃xBxx) = 1.
• So V ĉ

I (Bxx) = 1 for some x-variant ĉ of â.
• So ⟨V ĉ

I (x),V ĉ
I (x)⟩ ∈ I(B), and so ⟨ĉ(x), ĉ(x)⟩ ∈ I(B).

• So V ĉ
I (∀y(Bxy ⊃ ¬Byx)) = 1.

• So V ê
I (Bxy ⊃ ¬Byx) = 1 for y-variant ê where ê(y) = ĉ(x).

• So V ê
I (Bxy) ̸= 1 or V ê

I (¬Byx) = 1.
• So V ê

I (Bxy) ̸= 1 or V ê
I (Byx) ̸= 1.

• So ⟨ê(x), ê(y)⟩ /∈ I(B) or ⟨ê(y), ê(x)⟩ /∈ I(B).
• So ⟨ĉ(x), ĉ(x)⟩ /∈ I(B) or ⟨ĉ(x), ĉ(x)⟩ /∈ I(B) since ê(x) = ĉ(x).
• So ⟨ĉ(x), ĉ(x)⟩ /∈ I(B), contradicting the above.

Love: Regiment the following argument:

• Cam doesn’t love anyone who loves him back.
∀x(Lxc ⊃ ¬Lcx).

• May loves everyone who loves themselves.
∀y(Lyy ⊃ Lmy).

. ˙. If Cam loves himself, he doesn’t love May.
Lcc ⊃ ¬Lcm.

Taller: Regiment the following argument:

• If a first is taller than a second who is taller than a third, then the
first is taller than the third.
∀x∀y∀z((Txy ∧ Tyz) ⊃ Txz).

• Nothing is taller than itself.
¬∃xTxx.

. ˙. If a first is taller than a second, the second isn’t taller than the first.
∀x∀y(Txy ⊃ ¬Tyx).
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Quantified Logic with Identity
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Benjamin Brast-McKie
November 14, 2023

Logical Terms

Extensions: QL extends SL, but we needn’t stop there.

Question 1: How far could we go? What terms could we include?

Logicality: The primitive symbols of SL and QL can be divided in three:

Logical Terms: ¬,∧,∨,⊃,≡, ∀α, ∃α, xn, yn, zn . . . for n ≥ 0.
Non-Logical Terms: an, bn, cn, . . . and An, Bn, . . . for n ≥ 0.

Punctuation: (, )

Extensions: The “meanings” of the non-logical terms are fixed by an interpretation.

Semantics: The “meanings” of the logical terms are fixed by the semantics.

Question 2: How many logical terms are there?

Identity: At least one more, namely identity which we symbolize by ‘=’.

Syntax for QL=

Identity: We include ‘=’ in the primitive symbols of the language.

Well-Formed Formulas: We may define the well-formed formulas (wffs) of QL= as follows:

1. F nα1, . . . , αn is a wff if F n is an n-place predicate and α1, . . . , αn are
singular terms.

2. α = β is a wff if α and β are singular terms.

3. If φ and ψ are wffs and α is a variable, then:

(a) ∃αφ is a wff;

(b) ∀αφ is a wff;

(c) ¬φ is a wff;

(d) (φ ∧ ψ) is a wff;

(e) (φ ∨ ψ) is a wff;

(f) (φ ⊃ ψ) is a wff; and

(g) (φ ≡ ψ) is a wff.
4. Nothing else is a wff.

Atomic Formulas: The wffs defined by (1) and (2) are atomic.

Complexity: Comp(F nα1, . . . , αn) = Comp(α = β) = 0.
Comp(∃αφ) = Comp(∀αφ) = Comp(¬φ) = Comp(φ) + 1.
Comp(φ ∧ ψ) = Comp(φ ∨ ψ) = . . . = Comp(φ) + Comp(ψ) + 1.



Free Variables

Free Variables: We define the free variables recursively:

1. α is free in F nα1, . . . , αn if α = αi for some 1 ≤ i ≤ n where α is a
variable, F n is an n-place predicate, and α1, . . . , αn are singular terms.

2. α is free in β = γ if α = β or α = γ where α is a variable.

3. If φ and ψ are wffs and α and β are variables, then:

(a) α is free in ∃βφ if α is free in φ and α ̸= β;

(b) α is free in ∀βφ if α is free in φ and α ̸= β;

(c) α is free in ¬φ if α is free in φ;
...

4. Nothing else is a free variable.

Sentences of QL=

Sentences: A sentence of QL= is any wff without free variables.

Interpretation: Only the sentences of QL= will have truth-values on an interpretation
independent of an assignment function.

QL= Models

Question 3: What in the semantics will have to change?

Interpretations: I is an QL= interpretation over D iff both:

• I(α) ∈ D for every constant α in QL=.

• I(F n) ⊆ Dn for every n-place predicate F n.

Model: M = ⟨D, I⟩ is a model of QL= iff I is a QL= interpretation on D ̸= ∅.

Variable Assignments

Assignments: A variable assignment â(α) ∈ D for every variable α in QL=.

Referents: We may define the referent of α in M = ⟨D, I⟩ as follows:

V â
I (α) =

{
I(α) if α is a constant
â(α) if α is a variable.

Variants: A ĉ is an α-variant of â iff ĉ(β) = â(β) for all β ̸= α.
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Semantics for QL=

(A) V â
I (F nα1, . . . , αn) = 1 iff ⟨V â

I (α1), . . . ,V â
I (αn)⟩ ∈ I(F n).

(=) V â
I (α = β) = 1 iff V â

I (α) = V â
I (β).

(∀ ) V â
I (∀αφ) = 1 iff V ĉ

I (φ) = 1 for every α-variant ĉ of â.

(∃ ) V â
I (∃αφ) = 1 iff V ĉ

I (φ) = 1 for some α-variant ĉ of â.

(¬) V â
I (¬φ) = 1 iff V â

I (φ) ̸= 1.

...

Truth: VI (φ) = 1 iff V â
I (φ) = 1 for some â where φ is a sentence of QL=.

Example

Task 1: Prove that the following argument is valid.

(1) Hesperus is Phosphorus.
(2) Phosphorus is Venus.
. ˙. Hesperus is Venus.

Task 2: Prove that ∀x∀y∀z((x = y ∧ y = z) ⊃ x = z) is a tautology.

Logical Predicates

Taller-Than: Suppose we were to take ‘taller than’ (T) to be logical.

Question 4: Could we provide its semantics?

(T) V â
I (Tαβ) = 1 iff V â

I (α) is taller than V â
I (β).

Theory: The semantics would have to rely on a theory of being taller than.

• Providing such a theory lies outside the subject-matter of logic.
• By contrast, identity is something we already grasp.
• Compare our pre-theoretic grasp of negation, conjunction, and

the quantifiers.

Question 5: Could we take set-membership ∈ to be a logical term?

Question 6: What is it to be a logical term?

Existence: Observe that ∃x(x = x) is a tautology.

Question 7: Could we take a term in sentence position to be logical?

(⊥) V â
I (⊥) = 1 iff 1 ̸= 1.

(⊤) V â
I (⊤) = 1 iff 1 = 1.

3



Assignment Lemmas

Lemma 1: If â(α) = ĉ(α) for all free variables α in a wff φ, then V â
I (φ) = V ĉ

I (φ).

Base: Assume Comp(φ) = 0, so φ = (α = β) or φ = F nα1, . . . , αn.

(α = β): So V â
I (φ) = V â

I (α = β) = 1 iff V â
I (α) = V â

I (β) iff V ĉ
I (α) = V ĉ

I (β) . . .

(F nα1, . . . , αn): So V â
I (φ) = V â

I (F nα1, . . . , αn) = 1 iff ⟨V â
I (α1), . . . ,V â

I (αn)⟩ ∈ I(Fn) . . .

Lemma 2: For any sentence φ: VI (φ) = 1 iff V â
I (φ) = 1 for every v.a. â over D.

Lemma 3: For any sentence φ: VI (φ) ̸= 1 iff V â
I (φ) ̸= 1 for some v.a. â over D.

Leibniz’s Law

Believes: Regiment the following argument:

(1) Lois Lane believes that Superman can fly.

(2) Superman is Clark Kent.

. ˙. Lois Lane believes that Clark Kent can fly.

Sees: Regiment the following argument:

(1) Lois Lane sees Superman.

(2) Superman is Clark Kent.

. ˙. Lois Lane sees Clark Kent.

Question 8: Are these arguments intuitively valid?

Opacity: Whereas ‘sees’ admits substitution, ‘believes’ does not.

Transparency: We may say that ‘sees’ is transparent and that ‘believes’ is opaque.

Mathematics: Importantly, mathematics is transparent insofar as it does not include
any opaque contexts.
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Uniqueness and Quantity
LOGIC I

Benjamin Brast-McKie
November 16, 2023

Uniqueness

Uniqueness: Ingmar trusts Albert, but no one else.

Only: Regiment the following argument:

(1) Lois Lane only loves Clark Kent.

(2) Only Clark Kent is Superman.

. ˙. Lois Lane loves Superman.

Definite Descriptions

Question 1: Regiment the following sentences.

• Socrates is guilty.

• Socrates is not guilty.

• Socrates is guilty or not.

Question 2: Regiment the following sentences.

• The king of France is bald.

• The king of France is not bald.

• The king of France is bald or not.

Question 3: What is the difference between these two cases?

Existence: If the king of France is Bald, then the king of France exists.

Definite Article: ‘The king of France’ can’t be a name.

Regimentation: Russell offered the following analysis:

• ∃x(Kx f ∧ ∀y(Ky f ⊃ x = y) ∧ Bx).

• ∃x(∀y(Ky f ≡ x = y) ∧ Bx).

Negation: Negation applies to the predicate, not the sentence.



Task 1: Regiment the following:

1. Superman is keeping something from his lover.

2. The man with the axe is not Jack.

3. The Ace of diamonds is not the man with the axe.

4. One-eyed jacks and the man with the axe are wild.

5. No spy knows the combination to the safe.

6. The one Ingmar trusts is lying.

7. The person who knows the combination to the safe is not a spy.

At Least:

Task 2: Regiment the following claims.

1. There is at least one wild card.

2. There are at least two clubs.

3. There are at least three hearts on the table.

Question 4: How can we define these quantifiers in general?

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in
the scope of a quantifier that binds β.

Constants: If β is a constant, then β is free for any α and φ.

Substitution: If β is free for α in φ, then the SUBSTITUTION φ[β/α] is the result of
replacing all free occurrences of α in φ with β.

Examples: Consider the following cases:

(a) z is free for x in ∀y(Fxy ⊃ Fyx)

(b) y is not free for x in ∀y(Fxy ⊃ Fyx)

Inequality Quantifiers Defined

Definition: We may define the following abbreviations recursively:

Base: ∃≥1αφ := ∃αφ.

Recursive: ∃≥n+1αφ := ∃α(φ ∧ ∃≥nβ(α ̸= β ∧ φ[β/α])) where β is free for α.

Infinite: Γ∞ := {∃≥nx(x = x) : n ∈ N}.

Question 5: What is the smallest model to satisfy Γ∞?

2



At Most: Regiment the following claims.

1. There is at most one wild card.

2. There are at most two one-eyed jacks.

3. There are at most three black jacks.

Definition: ∃≤nαφ := ¬∃≥n+1αφ.

Cardinality Quantifiers

Task 3: Regiment the following.

1. There is one wild card.

2. There are two winning hands.

3. There are three hearts on the table.

Question 6: How can we define the cardinality quantifiers in general?

Base: ∃0αφ := ∀α¬φ.

Recursive: ∃n+1αφ := ∃α(φ ∧ ∃nβ(α ̸= β ∧ φ[β/α])).

Question 7: How do the cardinality quantifiers relate to the inequality quantifiers?

Between: ∃(n,m)αφ := ∃≥nαφ ∧ ∃≤mαφ where n ≤ m.

Exact: ∃nαφ := ∃(n,n)αφ.

Examples

1. Show that {¬Raa, ∀x(x=a ∨ Rxa)} is satisfiable.

2. Show that {¬Raa, ∀x(x=a ∨ Rxa), ∀x∃yRxy} is satisfiable.

3. Show that ∀x∀y x=y ⊢ ¬∃x x ̸= a.

Relations

Task 4: Is the following argument valid?

- ∀x∀y(Rxy ⊃ Ryx).
- ∀x∀y∀z((Rxy ∧ Ryz) ⊃ Rxz).

. ˙. ∀xRxx.

Task 5: Is the following argument valid?

- ∀x∀y∀z((Rxy ∧ Ryz) ⊃ Rxz).
- ∀x¬Rxx.

. ˙. ∀x∀y(Rxy ⊃ ¬Ryx).
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Natural Deduction in QL=

LOGIC I
Benjamin Brast-McKie

November 21, 2023

Motivation

Entailment: We have defined entailment in QL=.

Completeness: We want a complete natural deduction system for QL=.

Question 1: What rules do we need to derive the following?

- All humans are mortal.

- Socrates is human.

- Socrates is mortal.

. ˙. Someone is mortal.

- ∀x(Hx ⊃ Mx)

- Hs

- Ms

. ˙. ∃xMx

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in
the scope of a quantifier that binds β.

Constants: If β is a constant, then β is free for any α and φ.

Substitution: If β is free for α in φ, then the SUBSTITUTION φ[β/α] is the result of
replacing all free occurrences of α in φ with β.

Instance: φ[β/α] is a substitution instance of ∀αφ and ∃αφ if β is a constant.

Universal Elimination and Existential Introduction

(∀E) ∀αφ ⊢ φ[β/α] where β is a constant and α is a variable.

(∃I) φ[β/α] ⊢ ∃αφ where β is a constant and α is a variable.

Task 1: Derive the argument above.

Universal: Everyone is either great or unfortunate ∀x(Gx ∨ Ux).

Existential: Tom is either great or unfortunate (Gt ∨ Ut).

. ˙. ∃x(Gx ∨ Ux).

. ˙. ∃x(Gx ∨ Ut).

. ˙. ∃x(Gt ∨ Ut).

. ˙. ∃y∃x(Gy ∨ Uy).

. ˙. ∃y∃x(Gx ∨ Uy).

# ∃x∃x(Gx ∨ Ux).



Universal Introduction

Generalising: It would seem that we cannot universally generalise from instances.

Invalid: The following argument is invalid and should not be derivable.

- Socrates is mortal. (Ms)
# Everything is mortal. (∀xMx)

Valid: Compare the following valid argument which should be derivable:

- ∀x∀y∀z((Rxy ∧ Ryz) ⊃ Rxz).
- ∀x¬Rxx.

. ˙. ∀x∀y(Rxy ⊃ ¬Ryx).

Task 2: Use the rules we have to derive as much as we can.

1. ∀x∀y∀z((Rxy ∧ Ryz) ⊃ Rxz)

2. ∀x¬Rxx

3. ∀y∀z((Ray ∧ Ryz) ⊃ Raz) :∀E

4. ∀z((Rab ∧ Rbz) ⊃ Raz) :∀E

5. (Rab ∧ Rba) ⊃ Raa :∀E

6. ¬Raa :∀E

7. | Rab :AS for ⊃I

8. | | Rba :AS for ¬I

9. | | Rab ∧ Rba :∧I

10. | | Raa :⊃E

11. | ¬Rba :¬I

12. Rab ⊃ ¬Rba :⊃I

13. ∀y(Ray ⊃ ¬Rya) :∀I

14. ∀x∀y(Rxy ⊃ ¬Ryx) :∀I

Question 2: How are we going to introduce universal quantifiers without making
the invalid argument above derivable?

(∀I) φ[β/α] ⊢ ∀αφ where β is a constant, α is a variable, and β does not
occur in ∀αφ or in any undischarged assumption.

Arbitrary: The constraints on (∀E) require β to be arbitrary.

Review: Bad inference above is blocked.

In Premise: Anu loves every dog.
∀x(Dx ⊃ Lax) ⊢ Da ⊃ Laa ⊬ ∀x(Dx ⊃ Lxx).

In Conclusion: All dogs love themselves.
∀x(Dx ⊃ Lxx) ⊢ Da ⊃ Laa ⊬ ∀x(Dx ⊃ Lax).
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Existential Elimination

Task 3: Compare the following invalid inference.

- Someone is mortal.
# Zeus is mortal.

Question 3: How are we going to eliminate existential quantifiers without making
the argument above derivable?

Example: Consider the following argument:

- Everyone who applied found a position ∀x(Ax ⊃ ∃yFxy).
- Someone applied ∃xAx.

. ˙. Someone found a position ∃x∃yFxy.

(∃E) If ∃αφ, φ[β/α] ⊢ ψ where β is a constant that does not occur in ∃αφ, ψ,
or in any undischarged assumption, then ∃αφ ⊢ ψ.

Derivation: We can derive the example without deriving the invalid inference.

Quantifier Exchange Rules

(¬∃) ¬∃αφ ⊢ ∀α¬φ.

(¬∀) ¬∀αφ ⊢ ∃α¬φ.

(∀¬) ∀α¬φ ⊢ ¬∃αφ.

(∃¬) ∃α¬φ ⊢ ¬∀αφ.

Task 4: ∀α¬φ ⊢ ¬∃αφ.

1. ∀α¬φ

2. | ∃αφ

3. | | φ[β/α]

4. | | | ∃αφ

5. | | | φ[β/α]

6. | | | ¬φ[β/α]

7. | | ¬∃αφ

8. | ¬∃αφ

9. ¬∃αφ

Task 5: ∃α¬φ ⊢ ¬∀αφ.

10. ∃α¬φ

11. | ∀αφ

12. | | ¬φ[β/α]

13. | | | ∀αφ

14. | | | ¬φ[β/α]

15. | | | φ[β/α]

16. | | ¬∀αφ

17. | ¬∀αφ

18. ¬∀αφ

Task 6: Prove the rules below:

(MCP) If φ ⊢ ψ, then ¬ψ ⊢ ¬φ.

(∀DN) ∀α¬¬φ ⊢ ∀αφ.

(∃DN) ∃α¬¬φ ⊢ ∃αφ.

Task 7: Use the rules above to derive (¬∃) and (¬∀).
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Natural Deduction in QL=

LOGIC I
Benjamin Brast-McKie

October 2, 2024

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in
the scope of a quantifier that binds β.

Substitution: If β is free for α in φ, then the SUBSTITUTION φ[β/α] is the result of
replacing all free occurrences of α in φ with β.

Quantifier Rules

(∀E) ∀αφ ⊢ φ[β/α] where β is a constant and α is a variable.

(∃I) φ[β/α] ⊢ ∃αφ where β is a constant and α is a variable.

(∀I) φ[β/α] ⊢ ∀αφ where β is a constant, α is a variable, and β does not
occur in ∀αφ or in any undischarged assumption.

(∃E) If ∃αφ, φ[β/α] ⊢ ψ where β is a constant that does not occur in ∃αφ, ψ,
or in any undischarged assumption, then ∃αφ ⊢ ψ.

Identity Rules

(=I) ⊢ α = α for any constant α.

Axiom: This rule is better referred to as an axiom schema.
Note: Easy to use, but not always obvious when to use.

Task 1: Derive the following in QD:

• ∀x(x = x ⊃ ∃yFyx) ⊢ ∃y(Fyy).
• Everything is something.
• Something exists.

(=E) φ[α/γ], α = β ⊢ φ[β/γ].

Note: Also easy to use, but not always obvious how to use.

Task 2: Derive the following in QD:

• m = n ∨ n = o, An ⊢ Am ∨ Ao
• Every symmetric antisymmetric relation is lonely.
• Every irreflexive antisymmetric relation is asymmetric.



Relations

Task 4: Regiment and derive the following in QD.

1. Every transitive symmetric relation is left and right euclidean.

2. Every nonempty transitive and symmetric relation is reflexive.

3. Only the empty relation is symmetric and asymmetric.

4. Every intransitive relation is irreflexive.

5. Every intransitive relation is asymmetric.

Further Examples

Task 3: Regiment and derive the following in QD.

1. ∀x(x = m), Rma ⊢ ∃xRxx

2. ∀x(x=n ≡ Mx), ∀x(Ox ∨ ¬Mx) ⊢ On

3. ∃x(Kx ∧ ∀y(Ky → x=y) ∧ Bx), Kd ⊢ Bd

4. ⊢ Pa ⊃ ∀x(Px ∨ x ̸=a)
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Existential Elimination and Soundness
LOGIC I

Benjamin Brast-McKie
October 2, 2024

Substitution

Free For: β is FREE FOR α in φ just in case there is no free occurrence of α in φ in
the scope of a quantifier that binds β.

Substitution: If β is free for α in φ, then the SUBSTITUTION φ[β/α] is the result of
replacing all free occurrences of α in φ with β.

QD Rules

(∀E) ∀αφ ⊢ φ[β/α] where β is a constant and α is a variable.

(∃I) φ[β/α] ⊢ ∃αφ where β is a constant and α is a variable.

(∀I) φ[β/α] ⊢ ∀αφ where β is a constant, α is a variable, and β does not
occur in ∀αφ or in any undischarged assumption.

(∃E) If ∃αφ, φ[β/α] ⊢ ψ where β is a constant that does not occur in ∃αφ, ψ,
or in any undischarged assumption, then ∃αφ ⊢ ψ.

(=I) ⊢ α = α for any constant α.

(=E) φ[α/γ], α = β ⊢ φ[β/γ].

Existential Elimination

Task 1: Regiment and derive the following in QD.

1. The elephant would not obey.
Patrick is an elephant.
Patrick would not obey.

2. ∀x(Jx ⊃ Kx)
∃x∀yLxy
∀xJx
∃x(Kx ∧ Lxx).

3. ∃x(Px ⊃ ∀xQx)
∀xPx ⊃ ∀xQx.

4. ∃xPx ∨ ∃xQx
∃x(Px ∨ Qx).

5. Every nonempty asymmetric relation is non-symmetric.



Natural to Normative

Soundness: If Γ ⊢ φ, then Γ ⊨ φ.

1. Shows that we can trust QD to establish validity.

2. Easier to derive a conclusion that to provide a semantic argument.

3. The natural rules of deduction preserve validity.

Natural: QD describes (approximately) how we in fact reason.

Normative: Soundness explains why we ought to use QD to reason.

Soundness of QD

Assume: Γ ⊢QD φ, so there is a QD proof X of φ from Γ.

Lines: Let φi be the wfs on line i of X.

Dependencies: Let Γi be the undischarged assumptions at line i.

Proof: The proof goes by induction on length of X:

Base: Γ1 ⊨ φi.
Induction: If Γk ⊨ φk for all k ≤ n, then Γn+1 ⊨ φn+1.

Finite: Since X is finite, there is some m where Γm = Γ and φm = φ, so Γ ⊨ φ.

Base Case

Proof: Every line in a QD proof is either a premise or follows by the rules.

Assume: φ1 is either a premise or follows by AS or =I.

Premise: If φ1 is a premise or assumption, then Γ1 = {φ1}, and so Γ1 ⊨ φ1.
Identity: If φ1 follows by =I, then φ1 is α = α for some constant α.

• Letting M = ⟨D, I⟩ be any model, I(α) = I(α).
• Letting â be a variable assignment, V â

I (α) = V â
I (α).

• So V â
I (α = α) = 1, and so ⊨ α = α.

• Thus Γ1 ⊨ φ1 since Γ1 = ∅.

Induction Case

Assume: Γk ⊨ φk for all k ≤ n.

Undischarged: If φn+1 is a premise or assumption, then the argument above applies.

Rules: If φn+1 follows from Γn+1 by the QD rules, then Γn+1 ⊨ φn+1.

Cases: There are 12 rules in SD and an additional 6 in QD.
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Further Problems: Relations

Task 1: Regiment and derive the following in QD.

1. Every transitive and symmetric relation is quasi-reflexive.

2. Only the empty relation is symmetric and asymmetric.

3. Every intransitive relation is irreflexive.

4. Every intransitive relation is asymmetric.
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Soundness: Part II
LOGIC I

Benjamin Brast-McKie
December 5, 2023

Soundness of QD

Assume: Γ ⊢QD φ, so there is a QD proof X of φ from Γ.

Lines: Let φi be the ith line of X.

Dependencies: Let Γi be the undischarged assumptions at line i.

Proof: The proof goes by induction on length of X:

BASE: Γ1 ⊨ φi.

HYPOTHESIS: Assume Γk ⊨ φk for all k ≤ n.

INDUCTION: If φn+1 follows by the proof rules for QD from sentences in Γn+1,
then Γn+1 ⊨ φn+1.

Finite: Since X is finite, there is some m where Γm = Γ and φm = φ, so Γ ⊨ φ.

SD Lemmas

L12.1 If Γ ⊨ φ and Γ ⊆ Γ′, then Γ′ ⊨ φ.

L12.2 For any QD proof X, if φk is live at line n where k ≤ n, then Γk ⊆ Γn.

L12.3 If Γ ⊨ φ and Γ ⊨ ¬φ, then Γ is unsatisfiable.

L12.4 If Γ ∪ {φ} is unsatisfiable, then Γ ⊨ ¬φ.

L12.5 V â
I (φ) = V ĉ

I (φ) if â(α) = ĉ(α) for all free variables α in a wff φ.

L12.6 VI (φ) = 1 just in case V â
I (φ) = 1 for every v.a. â over D.

L12.7 If Γ ∪ {φ} ⊨ ψ, then Γ ⊨ φ ⊃ ψ.

SD Rules

(R) φk = φn+1 for live k ≤ n. Thus Γk ⊨ φk by hypothesis and Γk ⊆ Γn+1
by L12.2. Thus Γn+1 ⊨ φk by L12.1, and so Γn+1 ⊨ φn+1.

(¬I) • There is a proof of ψ at line h and ¬ψ at line j from φ on line i.

• By hypothesis Γh ⊨ ψ and Γj ⊨ ¬ψ, where Γh, Γj ⊆ Γn+1 ∪ {φi}.

• By L12.1, Γn+1 ∪ {φi} ⊨ ψ and Γn+1 ∪ {φi} ⊨ ¬ψ.

• So Γn+1 ∪ {φi} is unsatisfiable by L12.3, so Γn+1 ⊨ φn+1 by L12.4.



(∧E) • φn+1 ∧ ψ is live on line i ≤ n.

• By hypothesis, Γi ⊨ φn+1 ∧ ψ where Γi ⊆ Γn+1 by L12.2

• Thus Γn+1 ⊨ φn+1 ∧ ψ by L12.1, and so Γn+1 ⊨ φn+1 by semantics.

(⊃I) • There is a proof of ψ at line j from φ on line i.

• By hypothesis Γj ⊨ ψ, where Γj ⊆ Γn+1 ∪ {φ}.

• So Γn+1 ∪ {φ} ⊨ ψ, and so Γn+1 ⊨ φ ⊃ ψ by L12.7.

QD Lemmas

L12.8 V â
I (φ) = V â

I (φ[β/α]) if V â
I (α) = V â

I (β) and β is free for α in φ.

Base: Assume φ is F nα1, . . . , αn or α1 = α2 where V â
I (α) = V â

I (β).

• Let γi = β if αi = α and otherwise γi = αi.

• ⟨V â
I (α1), . . . ,V â

I (αn)⟩ ∈ I(F n) iff ⟨V â
I (γ1), . . . ,V â

I (γn)⟩ ∈ I(F n).

• V â
I (α1) = V â

I (αn) iff V â
I (γ1) = V â

I (γ2).

Induction: If Comp(φ) ≤ n, V â
I (φ) = V â

I (φ[β/α]) whenever V â
I (α) = V â

I (β).

Case 2: Assume φ = ψ ∧ χ where V â
I (α) = V â

I (β) for all â.

• So V â
I (φ) = 1 iff V â

I (ψ ∧ χ) = 1 iff V â
I (ψ) = V â

I (χ) = 1 iff . . .

Case 6: Assume φ = ∀γψ where V â
I (α) = V â

I (β).

• If γ = α, then φ = φ[β/α].

• If γ ̸= α, V â
I (∀γψ) = 1 iff V ê

I (ψ) = 1 for all γ-variants ê of â iff . . .

• Let ê be an arbitrary γ-variant of â.

• Since γ ̸= α, ê(α) = â(α) if α is a variable, so V ê
I (α) = V â

I (α).

• Thus V ê
I (α) = V â

I (β) follows from the assumption.

• Since β is free for α in ∀γψ, we know that γ ̸= β.

• If β is a variable, then ê(β) = â(β) since ê is a γ-variant of â.

• Thus V ê
I (β) = V â

I (β), and so V ê
I (α) = V ê

I (β).

• By hypothesis, V ê
I (ψ) = V ê

I (ψ[β/α]), where ê was arbitrary.

• . . . iff V ê
I (ψ[β/α]) = 1 for all γ-variants ê of â iff V â

I (φ[β/α]) = 1.

L12.9 If M = ⟨D, I⟩ and M′ = ⟨D, I ′⟩ where I and I ′ agree about every
constant α and n-place predicate F n that occurs in φ, it follows that
V â
I (φ) = V â

I ′(φ) for any variable assignment â over D.

Base: ⟨V â
I (α1), . . . ,V â

I (αn)⟩ ∈ I(F n) iff ⟨V â
I ′(α1), . . . ,V â

I ′(αn)⟩ ∈ I ′(F n).

• I(F n) = I ′(F n) is immediate from the assumption.

• V â
I (αi) = I(αi) = I ′(αi) = V â

I ′(αi) if αi is a constant.

• V â
I (αi) = â(αi) = V â

I ′(αi) if αi is a variable.
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L12.10 For any constant β that does not occur in ∀αφ or in any sentence ψ ∈ Γ,
if Γ ⊨ φ[β/α], then Γ ⊨ ∀αφ.

1. Assume Γ ⊨ φ[β/α] for constant β not in ∀αφ or Γ.
2. Assume Γ ⊭ ∀αφ, and so M satisfies Γ but V â

I (∀αφ) ̸= 1.
3. So V ĉ

I (φ) ̸= 1 for some α-variant ĉ of â.
4. Let M′ by like M but for I ′(β) = ĉ(α).
5. By L12.9, M′ satisfies Γ since β does not occur in Γ.
6. So M′ satisfies φ[β/α] since Γ ⊨ φ[β/α].
7. By L12.6, V ĉ

I ′(φ[β/α]) = 1 for all ĉ, and so for ĉ in particular.
8. Since β is not in ∀αφ, we know β is not in φ.
9. So V ĉ

I ′(φ) ̸= 1 by L.12.9 given (3) above.
10. By (4) above, V ĉ

I ′(α) = V ĉ
I ′(β) where β is free for α.

11. By L12.8, V ĉ
I ′(φ) = V ĉ

I ′(φ[β/α]).
12. Thus V ĉ

I ′(φ[β/α]) ̸= 1, contradicting the above.

L12.11 ∀αφ ⊨ φ[β/α] where α is a variable and φ[β/α] is a sentence.

• Let M satisfy ∀αφ, so V â
I (∀αφ) = 1 for some â.

• So V ĉ
I (φ) = 1 where ĉ(α) = I(β) for an α-variant ĉ of â.

• By L12.8, V ĉ
I (φ) = V ĉ

I (φ[β/α]), and so V ĉ
I (φ[β/α]) = 1.

L12.12 If Γ ⊨ φ and Σ ∪ {φ} ⊨ ψ, then Γ ∪ Σ ⊨ ψ.

L12.13 φ[β/α] ⊨ ∃αφ where α is a variable and φ[β/α] is a sentence.

L12.14 For any constant β that does not occur in ∃αφ, ψ, or in any sentence
χ ∈ Γ, if Γ ⊨ ∃αφ and Γ ∪ {φ[β/α]} ⊨ ψ, then Γ ⊨ ψ.

L12.15 If α and β are constants, then φ[α/γ], α = β ⊨ φ[β/γ].

QD Rules

(∀I) • φi = φ[β/α] for i ≤ n live at n + 1 where β is not in φn+1 or Γn+1.
• So Γi ⊨ φi by hypothesis, and Γi ⊆ Γn+1 by L12.2.
• Thus Γn+1 ⊨ φi by L12.1, so Γn+1 ⊨ φ[β/α].
• So Γn+1 ⊨ ∀αφ by L12.10 since β not in ∀αφ or Γn+1.
• Equivalently, Γn+1 ⊨ φn+1.

(∀E) • φi = ∀αφ for i ≤ n live at n + 1 where φn+1 = φ[β/α].
• So Γi ⊨ φi by hypothesis, and Γi ⊆ Γn+1 by L12.2.
• Thus Γn+1 ⊨ φi by L12.1, so Γn+1 ⊨ ∀αφ.
• By L12.11 ∀αφ ⊨ φ[β/α], and so Γn+1 ⊨ φ[β/α] by L12.12.
• Equivalently, Γn+1 ⊨ φn+1.
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Completeness of QD
LOGIC I

Benjamin Brast-McKie
October 7, 2024Basic Lemmas

L13.1 If α is a constant and X is a proof in which the constant β does not
occur, then X[β/α] is also a proof.

L13.3 If Λ ∪ {φ} is inconsistent, then Λ ⊢ ¬φ.

L13.5 If Λ ⊢ φ and Π ∪ {φ} ⊢ ψ, then Λ ∪ Π ⊢ ψ.

L13.6 If Λ ∪ {φ} and Λ ∪ {¬φ} are both inconsistent, then Λ is inconsistent.

L13.9 If Λ ⊢ φ and Λ ⊢ ¬φ, then Λ is inconsistent.

L13.11 If Λ ⊢ φ, then Λ ∪ Π ⊢ φ.

Satisfiability

T13.1 Every consistent set of QL= sentences Γ is satisfiable.

Completeness: If Γ ⊨ φ, then Γ ⊢ φ.

1. Assuming Γ ⊨ φ, we know Γ ∪ {¬φ} is unsatisfiable.

2. So Γ ∪ {¬φ} is inconsistent by T13.1.

3. So Γ ⊢ ¬¬φ by L13.3, and so Γ ⊢ φ by DN and L13.5.

Saturation

Free: Let φ(α) be a wff of QL= with at most one free variable α.

Saturated: A set of sentences Σ is saturated in QL=
N just in case for each wff φ(α)

of QL=
N, there is a constant β where (∃αφ ⊃ φ[β/α]) ∈ Σ.

Constants: Let C be the constants of QL=
N where N ⊆ C are new constants.

L13.2 Assuming Γ is consistent in QL=, we know Γ is consistent in QL=
N.

Free Enumeration: Let φ1(α1), φ2(α2), φ3(α3), . . . enumerate all wffs of QL=
N with one free variable.

Witnesses: θ1 = (∃α1φ1 ⊃ φ1[n1/α1]) where n1 ∈ N is the first constant not in φ1.

θk+1 = (∃αk+1φk+1 ⊃ φk+1[nk+1/αk+1]) where nk+1 ∈ N is the first
constant not in θj for any j ≤ k.

Saturation: Let Σ1 = Γ, Σn+1 = Σn ∪ {θn}, and ΣΓ =
⋃

i∈N Σn.

L13.4 ΣΓ is consistent and saturated in QL=
N.

1. If Σm+1 is inconsistent, then Σm ⊢ ∃αm+1φm+1 and Σm ⊢ ¬φm+1[nm+1/αm+1].

2. So Σm ⊢ ∀αm+1¬φm+1 by ∀I, and so Σm ⊢ ¬∃αm+1φm+1 by ∀¬.

3. If ΣΓ is inconsistent, then Σm ⊢ ⊥ for some m ∈ N.



Maximization

Maximal: A set of sentences ∆ is MAXIMAL in QL=
N just in case as either ψ ∈ ∆

or ¬ψ ∈ ∆ for every sentence ψ in QL=
N.

Full Enumeration: Let ψ0, ψ1, ψ2, . . . enumerate all sentences in QL=
N.

Maximization: Let ∆0 = Σ, ∆n+1 =

{
∆n ∪ {ψn} if Γn ∪ {ψn} is consistent
∆n ∪ {¬ψn} otherwise.

, and

∆Σ =
⋃

i∈N ∆n.

L13.7 ∆ = ∆ΣΓ is maximal consistent in QL=
N.

Case 1: ∆n ∪ {ψn} is consistent, and so ∆n+1 = ∆n ∪ {ψn} is consistent.

Case 2: ∆n ∪ {ψn} is not consistent, and so ∆n+1 = ∆n ∪ {¬ψn}.

1. If ∆n ∪ {¬ψn} is inconsistent, then ∆n is inconsistent by L13.6.

2. So ∆n+1 is consistent in both cases.

3. If ∆Σ is inconsistent, then ∆m ⊢ ⊥ for some m ∈ N.

4. Maximality is immediate.

L13.8 Γ ⊆ ΣΓ ⊆ ∆ where ∆ is saturated.

1. Immediate from the definitions.

L13.10 φ ∈ ∆ whenever ∆ ⊢ φ.

1. Assuming ∆ ⊢ φ, we know ∆ ⊬ ¬φ by L13.9.

2. So ¬φ /∈ ∆ since otherwise ∆ ⊢ ¬φ.

3. Thus φ ∈ ∆ by maximality.

Henkin Model

Element: [α]∆ = {β ∈ C : α = β ∈ ∆}.

Domain: D∆ = {[α]∆ : α ∈ C}.

L13.13 If α = β ∈ ∆, then [α]∆ = [β]∆.

1. Assuming α = β ∈ ∆ where Γ ∈ [α]∆, we know α = γ ∈ ∆.

2. So α = β, α = γ ⊢ β = γ by =E, and so ∆ ⊢ β = γ by L13.11.

3. Thus β = γ ∈ ∆ by L13.10, and so γ ∈ [β]∆, hence [α]∆ ⊆ [β]∆.

Constants: I∆(α) = [α]∆ for all constants α ∈ C.

Predicates: I∆(F n) = {⟨[α1]∆, . . . , [αn]∆⟩ ∈ Dn
∆ : F nα1, . . . , αn ∈ ∆}.

L13.14 If αi = βi ∈ ∆, then F nα1, . . . , αn ∈ ∆ iff F nα1, . . . , αn[βi/αi] ∈ ∆.

1. Assume αi = βi ∈ ∆ where F nα1, . . . , αn ∈ ∆.

2. ∆ ⊢ F nα1, . . . , αn[βi/αi] by =E, so F nα1, . . . , αn[βi/αi] ∈ ∆ by L13.10.

3. Parity of reasoning completes the proof.
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Henkin Lemmas

L13.15 V â
I∆
(∃αψ) = 1 just in case V â

I∆
(ψ[β/α]) = 1 for some constant β ∈ C.

1. Letting V â
I∆
(∃αφ) = 1 for some â, V ĉ

I∆
(φ) = 1 for some α-variant ĉ.

2. So ĉ(α) = [β]∆ for some β ∈ C, so ĉ(α) = I∆(β) since I∆(β) = [β]∆.

3. Thus V ĉ
I (α) = V ĉ

I (β), and so V ĉ
I∆
(φ) = V ĉ

I∆
(φ[β/α]) by L12.9.

4. So V ĉ
I∆
(φ[β/α]) = 1, and so V â

I∆
(φ[β/α]) = 1 by L12.6.

5. Assume instead that V â
I∆
(φ[β/α]) = 1 for some β ∈ C.

6. Let ĉ be the α-variant of â where ĉ(α) = I∆(β), so V ĉ
I (α) = V ĉ

I (β).

7. Thus V ĉ
I∆
(φ) = V ĉ

I∆
(φ[β/α]) by L12.9, and so V â

I∆
(∃αφ) = 1.

L13.16 V â
I∆
(∀αφ) = 1 just in case V â

I∆
(φ[β/α]) = 1 for all constants β ∈ C.

1. Similar to L13.15.

L13.17 M∆ satisfies φ just in case φ ∈ ∆.

Base: V â
I∆
(α1 = α2) = 1 iff I∆(α1) = I∆(α2) iff [α1]∆ = [α2]∆ iff α1 = α2 ∈ ∆.

1. If [α1]∆ = [α2]∆, then α2 ∈ [α2]∆ by L13.12, and so α2 ∈ [α1]∆.

2. Thus α1 = α2 ∈ ∆ by definition, and the converse holds by L13.13.

Induction: Assume V â
I∆
(φ) = 1 just in case φ ∈ ∆ whenever Comp(φ) ≤ n.

1. Let φ be a sentence of QL=
N where Comp(φ) = n + 1.

Case 1: V â
I∆
(¬ψ) = 1 iff V â

I∆
(ψ) ̸= 1 iff ψ /∈ ∆ iff ¬ψ ∈ ∆.

Case 2: V â
I∆
(ψ ∧ χ) = 1 iff V â

I∆
(ψ) = V â

I∆
(χ) = 1 iff ψ, χ ∈ ∆ iff ψ ∧ χ ∈ ∆.

Case 6: V â
I∆
(∃αψ) = 1 iff V â

I∆
(ψ[β/α]) = 1 for some β ∈ C by L13.15.

1. iff ψ[β/α] ∈ ∆ for some β ∈ C by hypothesis.

2. iff ∃αψ ∈ ∆ by ∃I and L13.10 given saturation.

Conclusion: So V â
I∆
(φ) = 1 just in case φ ∈ ∆, from which the lemma follows.

Restriction

Restriction: I ′
∆(α) = [α]∆ for every constant α in QL=.

L13.18 For all QL= sentences φ, M′
∆ satisfies φ just in case M∆ satisfies φ.

T13.1 Every consistent set of QL= sentences Γ is satisfiable.

Compactness

C13.2 If Γ ⊨ φ, then there is a finite subset Λ ⊆ Γ where Λ ⊨ φ.

C13.3 Γ is satisfiable if every finite subset Λ ⊆ Γ is satisfiable.
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Completeness of QD: Part II
LOGIC I

Benjamin Brast-McKie
December 12, 2023Basic Lemmas

L13.1 If α is a constant and X is a proof in which the constant β does not
occur, then X[β/α] is also a proof.

L13.3 If ΛY tφu is inconsistent, then Λ $ ␣φ.

L13.5 If Λ $ φ and ΠY tφu $ ψ, then ΛYΠ $ ψ.

L13.6 If ΛY tφu and ΛY t␣φu are both inconsistent, then Λ is inconsistent.

L13.9 If Λ $ φ and Λ $ ␣φ, then Λ is inconsistent.

L13.11 If Λ $ φ, then ΛYΠ $ φ.

Satisfiability

T13.1 Every consistent set of QL= sentences Γ is satisfiable.

Completeness: If Γ ( φ, then Γ $ φ.

1. Assuming Γ ( φ, we know ΓY t␣φu is unsatisfiable.

2. So ΓY t␣φu is inconsistent by T13.1.

3. So Γ $ ␣␣φ by L13.3, and so Γ $ φ by DN and L13.5.

Saturation

Free: Let φ(α) be a wff of QL= with at most one free variable α.

Saturated: A set of sentences Σ is saturated in QL=
N just in case for each wff φ(α)

of QL=
N, there is a constant β where (Dαφ Ą φ[β/α]) P Σ.

Constants: Let C be the constants of QL=
N where N Ď C are new constants.

L13.2 Assuming Γ is consistent in QL=, we know Γ is consistent in QL=
N.

Free Enumeration: Let φ1(α1), φ2(α2), φ3(α3), . . . enumerate all wffs of QL=
N with one free variable.

Witnesses: θ1 = (Dα1φ1 Ą φ1[n1/α1]) where n1 P N is the first constant not in φ1.

θk+1 = (Dαk+1φk+1 Ą φk+1[nk+1/αk+1]) where nk+1 P N is the first
constant not in θj for any j ď k.

Saturation: Let Σ1 = Γ, Σn+1 = Σn Y tθnu, and ΣΓ =
Ť

iPN Σn.

L13.4 ΣΓ is consistent and saturated in QL=
N.

1. If Σm+1 is inconsistent, then Σm $ Dαm+1φm+1 and Σm $ ␣φm+1[nm+1/αm+1].

2. So Σm $ @αm+1␣φm+1 by @I, and so Σm $ ␣Dαm+1φm+1 by @␣.

3. If ΣΓ is inconsistent, then Σm $ K for some m P N.



Maximization

Maximal: A set of sentences ∆ is maximal in QL=
N just in case as either ψ P ∆ or

␣ψ P ∆ for every sentence ψ in QL=
N.

Full Enumeration: Let ψ0, ψ1, ψ2, . . . enumerate all sentences in QL=
N.

Maximization: Let ∆0 = Σ, ∆n+1 =

#

∆n Y tψnu if Γn Y tψnu is consistent
∆n Y t␣ψnu otherwise.

, and

∆Σ =
Ť

iPN ∆n.

L13.7 ∆ = ∆ΣΓ is maximal consistent in QL=
N.

Case 1: ∆n Y tψnu is consistent, and so ∆n+1 = ∆n Y tψnu is consistent.

Case 2: ∆n Y tψnu is not consistent, and so ∆n+1 = ∆n Y t␣ψnu.

1. If ∆n Y t␣ψnu is inconsistent, then ∆n is inconsistent by L13.6.

2. So ∆n+1 is consistent in both cases.

3. If ∆Σ is inconsistent, then ∆m $ K for some m P N.

4. Maximality is immediate.

L13.8 Γ Ď ΣΓ Ď ∆ where ∆ is saturated.

1. Immediate from the definitions.

L13.10 φ P ∆ whenever ∆ $ φ.

1. Assuming ∆ $ φ, we know ∆ & ␣φ by L13.9.

2. So ␣φ R ∆ since otherwise ∆ $ ␣φ.

3. Thus φ P ∆ by maximality.

Henkin Model

Element: [α]∆ = tβ P C : α = β P ∆u.

Domain: D∆ = t[α]∆ : α P Cu.

L13.13 If α = β P ∆, then [α]∆ = [β]∆.

1. Assuming α = β P ∆ where γ P [α]∆, we know α = γ P ∆.

2. So α = β, α = γ $ β = γ by =E, and so ∆ $ β = γ by L13.11.

3. Thus β = γ P ∆ by L13.10, and so γ P [β]∆, hence [α]∆ Ď [β]∆.

Constants: I∆(α) = [α]∆ for all constants α P C.

Predicates: I∆(F n) = tx[α1]∆, . . . , [αn]∆y P Dn
∆ : F nα1, . . . , αn P ∆u.

L13.14 If αi = βi P ∆, then F nα1, . . . , αn P ∆ iff F nα1, . . . , αn[βi/αi] P ∆.

1. Assume αi = βi P ∆ where F nα1, . . . , αn P ∆.

2. ∆ $ F nα1, . . . , αn[βi/αi] by =E, so F nα1, . . . , αn[βi/αi] P ∆ by L13.10.

3. Parity of reasoning completes the proof.
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Henkin Lemmas

L13.15 V â
I∆
(Dαψ) = 1 just in case V â

I∆
(ψ[β/α]) = 1 for some constant β P C.

1. Letting V â
I∆
(Dαφ) = 1 for some â, V ĉ

I∆
(φ) = 1 for some α-variant ĉ.

2. So ĉ(α) = [β]∆ for some β P C, so ĉ(α) = I∆(β) since I∆(β) = [β]∆.

3. Thus V ĉ
I (α) = V ĉ

I (β), and so V ĉ
I∆
(φ) = V ĉ

I∆
(φ[β/α]) by L12.8.

4. So V ĉ
I∆
(φ[β/α]) = 1, and so V â

I∆
(φ[β/α]) = 1 by L12.6.

5. Assume instead that V â
I∆
(φ[β/α]) = 1 for some β P C.

6. Let ĉ be the α-variant of â where ĉ(α) = I∆(β), so V ĉ
I (α) = V ĉ

I (β).

7. Thus V ĉ
I∆
(φ) = V ĉ

I∆
(φ[β/α]) by L12.8, and so V â

I∆
(Dαφ) = 1.

L13.16 V â
I∆
(@αφ) = 1 just in case V â

I∆
(φ[β/α]) = 1 for all constants β P C.

1. Similar to L13.15.

L13.17 M∆ satisfies φ just in case φ P ∆.

Base: V â
I∆
(α1 = α2) = 1 iff I∆(α1) = I∆(α2) iff [α1]∆ = [α2]∆ iff α1 = α2 P ∆.

1. If [α1]∆ = [α2]∆, then α2 P [α2]∆ by L13.12, and so α2 P [α1]∆.

2. Thus α1 = α2 P ∆ by definition, and the converse holds by L13.13.

Induction: Assume V â
I∆
(φ) = 1 just in case φ P ∆ whenever Comp(φ) ď n.

1. Let φ be a sentence of QL=
N where Comp(φ) = n + 1.

Case 1: V â
I∆
(␣ψ) = 1 iff V â

I∆
(ψ) ‰ 1 iff ψ R ∆ iff ␣ψ P ∆.

Case 2: V â
I∆
(ψ^ χ) = 1 iff V â

I∆
(ψ) = V â

I∆
(χ) = 1 iff ψ, χ P ∆ iff ψ^ χ P ∆.

Case 6: V â
I∆
(Dαψ) = 1 iff V â

I∆
(ψ[β/α]) = 1 for some β P C by L13.15.

1. iff ψ[β/α] P ∆ for some β P C by hypothesis.

2. iff Dαψ P ∆ by DI and L13.10 given saturation.

Conclusion: So V â
I∆
(φ) = 1 just in case φ P ∆, from which the lemma follows.

Restriction

Restriction: I 1
∆(α) = [α]∆ for every constant α in QL=.

L13.18 For all QL= sentences φ, M1
∆ satisfies φ just in case M∆ satisfies φ.

T13.1 Every consistent set of QL= sentences Γ is satisfiable.

Compactness

C13.2 If Γ ( φ, then there is a finite subset Λ Ď Γ where Λ ( φ.

C13.3 Γ is satisfiable if every finite subset Λ Ď Γ is satisfiable.
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Final Exam Review

Regimentation: (a) No two individuals are at least as tall as each other. Sanna is
at least as tall as the finalist, and the finalist is at least as tall as
Sanna. Thus, Sanna is the finalist.

Models: (a) Qab, Qba * a = b.

(b) @x@y(Px Ą (Py Ą x ‰ y)) * DxDy x ‰ y.

Equivalence: Dx(@y(Py Ą x = y)^ Px) )( Dx@y(Py ” x = y).

Relations: (a) R is symmetric and antisymmetric. Therefore R is reflexive.

(b) R is asymmetric. Therefore R is antisymmetric.
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